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ABSTRACT 

 

A MULTISCALE MODELING APPROACH TO UNDERSTAND 
MECHANISM OF DEPOSIT CONTROL BY LUBRICANT DETERGENTS 

AND DISPERSANTS 
 
 

Kan, Esra 
Master of Science, Polymer Science and Technology 

Supervisor:  
 
 

July 2022, 101 pages 

 

 

With the recent developments in high performance computing power, molecular 

modeling calculations to design and improve new generation additives for engine 

oils have reached a level that can support and guide experimental results. Control of 

insoluble nanoparticle aggregations in oil and on the engine pistons is the most 

important key performance parameter for lubricant oil additives. General consensus 

about the mechanism of deposit build-up is the self-aggregation of nanosized 

insoluble structures. Detergents and dispersants are the major additives to prevent 

aggregation in lubricant formulations provided by Lubrizol Corporation. Together 

with the base oil, they play a significant role to disperse and stabilize insoluble 

particles to control deposit formation. In this study, multiscale modeling methods 

were used to elucidate molecular mechanism of deposit control via detergents and 

dispersants by using density functional theory, molecular dynamics simulations of 

cells constructed by statistical sampling of large number of molecular configurations 

and coarse-grained simulations. The aim of this study is to understand the role of 

different groups such as bis-succinimide amine center and two polyisobutylene tails 

in dispersants as well as anionic sulfonate head group and alkyl tails in detergents. It 
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was demonstrated that the mechanism of deposit control can be explained by the 

interactions between constituents such as hydrogen bonding and hydrophobic-

hydrophilic forces. We showed that nanoparticle aggregation is mitigated by 

intercalation of dispersant and detergent polar groups between the insoluble 

nanoparticles followed by the extension of hydrophobic tails into the oil phase that 

decreases coalesce further by forming a repulsive layer against the other 

nanoparticles. 

 

Keywords: Dispersant, Detergent, Multiscale Modeling, Molecular Dynamics 

Simulation, Coarse-Grained Simulation  
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kleyebilecek ve 

maddeleri için en önemli performans parametresidir. 
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CHAPTER 1  

1 INTRODUCTION  

The science of lubrication was born to reduce friction with the use of axles and 

bearings after the 17th century [1], [2]. In a lubrication system, there are moving 

surfaces under load and a lubricant between these surfaces. Both the physical and 

chemical properties of the lubricants are exploited by the industry. Reducing friction 

and wear is the most important function of lubricants. 

1.1 Base Oil 

Lubricating base oils are crude oil products that have been refined [3]. Base oils are 

main ingredients and carry out the primary function of lubricants. Base oils comprise 

a significant portion of lubricants. The remaining components of the lubricants are 

additives, a combination of compounds that contribute crucial properties to protect 

the engine's moving parts. Additives support the ability of base oil to protect engine 

bearings, piston rings, and other moving engine components. 

The choice of base oils can have a significant impact on the lubricant's qualities. 

American Petroleum Institute (API) classifies the base oils at five groups. The 

properties of each group of base oils are different [4]. 

Base oils have four physical properties that determine how they perform in service 

[5]. These are pour point, viscosity, viscosity index and purity. First, the pour point 

is the lowest temperature at which an oil sample can be poured. The base oil to be 

selected should have the appropriate pouring point according to the usage. Viscosity 

is the resistance to flow. The Viscosity Index (VI) is the change in viscosity with 

temperature. High VI oils change viscosity less with temperature than a low VI oil. 
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The final physical property is purity. Components such as nitrogen and sulfur impair 

the purity. Their amount in the base oil should be limited [5]. 

Five classes of base oils are based on their structures and performance characteristics 

[1]. Group I, II and III, that are hydro-processed mineral oils, are refined from 

petroleum crude oil. Group I base oils have a sulfur content greater than 0.03% by 

weight, a saturate content of less than 90%, and a VI between 80 and 119. They are 

widely utilized in industrial and marine lubricants, as well as in older engine oils. 

Both Group II and III are hydro-processed oils with similar purity and 99% saturates. 

For Group II base oils, hydro-treating is a common method for production which is 

a process that requires adding hydrogen to base oil at high temperatures in the 

presence of a catalyst in order to stabilize the base oil's most reactive components, 

improve color, and extend its service life.  The major distinction between Group II 

and III is that Group III has a VI of 120 or above. Group II which used in this study 

dominates the base oil supply, particularly in North America [2].  

Group III base oils are frequently hydrocracked which is more severe form of hydro-

processing. It is performed by introducing hydrogen into the base oil, at temperatures 

and pressures that are higher than those used in ordinary hydro-treating. Sulphur, 

nitrogen, and aromatics are all eliminated to a large extent [2].  

Group IV oils are mainly polyalphaolefins (PAOs) that are a type of synthetic base 

oils. Group IV base oils can be produced with a VI of up to 140 by combining 

different alpha olefins [1]. Base oils in Group V are those that are not in Groups I, 

II, III, or IV. Since, this group includes naphthenic base oils, different synthetic 

esters, polyalkyleneglycols (PAGs), phosphate esters, and others. Base oil categories 

are shown in Table 1.1. below, according to API. 
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Table 1.1. API base oil categories [3]. 

 

1.2 Lubricant Deposit Control Additives 

Lubricants can be designed with a variety of components, depending on the needs of 

the application. Some intended features can be increased with base oil selection, 

while others can be improved with additives. Engine oil additives are made to 

preserve a variety of engines, including those used in heavy trucks, passenger cars, 

and ships, as well as smaller engines found in recreational vehicles. The property of 

automotive lubricants, particularly engine oils, to suspend undesired particles from 

thermal and oxidative degradation is one of their most important qualities. When by-

products of fuel combustion, pass through piston rings into the lubricant, side 

products formed due to the reactive species and lubricant oxidation. The oxidation 

products are thermally unstable and decompose into highly polar compounds. They 

also have a tendency for forming surface deposits and clogging engine rings. First, 

deposits cause malfunctioning in tight surfaces, such as those between pistons and 

cylinder walls, and it hinders oil flow to sections that require lubrication [3].  

The dispersant and detergent are oxidation inhibitors and more importantly, they are 

the main deposit control additives in lubricant oil. Dispersants have the ability to 

inhibit the production of high-temperature deposit formations by the aggregation of 

insolubles, while detergents have the capability to disperse and suspend 

contaminants [4]. 

Base Oil 

Category 
Sulphur (%)  Saturates (%) Viscosity Index 

Group I >0.03 and/or <90 80 to 120 

Group II <0.03 and >90 80 to 120 

Group III <0.03 and >90 >120 

Group IV PAO Synthetic Lubricants 

Group V All other base oils not included in Group I, II, III, IV 
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In an engine environment, these additives deal with two basic deposits: soot and 

sludge. Soot is produced by diesel engines, due to incomplete oxidation of the fuel 

upon ignition [5], [6]. As a result of the accumulation of soot, oil thickening issues 

arise. These ultrafine granular and abrasive particles have a diameter of less than 100 

nm, yet they aggregate over time into larger particles with a diameter on the order of 

1 µm to depending on the time their polar surface is exposed to the oil. Sludge is 

commonly generated in the lubricant of gasoline passenger car engine oils, which is 

not as large as soot in size. It sourced from the thermal oxidation of oil, as well as 

the fumes that contained partially burned fuel. Both soot and sludge increase the 

viscosity of the oil, which is harmful for engine rings. Soot and sludge, that are 

insoluble particles and carbon-rich or metallic by nature, are the result of incomplete 

fuel oxidation during ignition [5]. 

1.2.1 Detergent 

Since the 1940s, detergents have been used in engine oil applications as lubricant 

additives [5]. These lubricant additives became named as 'detergents' as a result of 

their cleaning capability, chemical affinity and structural similarity to aqueous 

detergents, such as those used in laundry soaps. Detergents are also called as metallic 

soaps [7]. Detergents are metal salts of organic acids that improve lubricant 

compositions by providing corrosion protection, deposit prevention, and a variety of 

other advantages. They are chemical compounds that chemically neutralize deposits 

that form under high-temperature environments, or as a result of burning sulfur-

containing fuels or other materials that produce acidic combustion products [4]. 

Alkyl benzenesulfonic acids, alkylphenols, carboxylic acids, and alkenyl phosphonic 

acids are some of the common acids used to synthesize detergents. The amount of 

metal used, may be equal to or greater than the stoichiometric amount required to 

neutralize the acid function completely. The detergents are termed 'neutral' when the 

metal cation is present in the stoichiometric amount. They are termed as 'basic, 

overbased, or superbased' when they are present in excess [3][8]. The amount of 
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overbasing, as well as the size and shape of the component, have an impact on 

detergent performance [5]. This study will not include any research into over-based 

structures.

Detergent type and concentration are highly depending on the application such that 

different combinations might be required to achieve optimum performance and cost. 

Sulfonate-, phenate- and salicylate-type detergents incorporating calcium carbonate 

are the most widely used in Lubrizol Corporation formulations as shown in Figure 

1.1. This thesis is the product of a Technology Transfer Office Project carried out 

with the collaboration of Lubrizol Corporation. In addition, the experimental results 

were shared by the company, and they shared their valuable experiences on this 

subject.

Figure 1.1. Molecular structures of (a) sulfonate, (b) phenate, (c) salicylate 
detergent.

This study focused on the metal salt detergents, specifically on the sulfonic acids 

(sulfonates) that have more applications compared to alkylphenol (phenates), or 

alkyl salicylic acids (salicylates) for the inhibition of deposit formation. One of the 

key groups of lubricant additive components that helps enhance the performance and 

life of the engine are alkyl aryl (alkaryl) sulfonate detergents. Alkaryl sulfonates are 

significant engine oil detergents that clean and protect the engine against rust [9]. 

Their detergent activity contributes in the neutralization of acids created during fuel 

combustion, which can cause engine damage. Alkaryl sulfonates are formed by 

neutralizing an alkaryl sulfonic acid. Alkaryl sulfonic acid have a benzene ring with 

sulfonic acid substituent groups and long-chain alkyl substituent groups, with a base 

metal, typically calcium hydroxide, to form the corresponding metal salt as depicted 
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in Equation 1.a and 1.b. Mg2+ and Ca2+ are the most commonly used divalent metals 

[5]. 

                                                                 (1.a)                                                  

   (1.b)                    

The main role of the detergent helps keep small particles suspended so that they can 

be removed by the oil filter and not build up any deposits and aggregates in the 

engine. 

1.2.2 Dispersant 

Soot is a common by-product of internal combustion engines. Organic oxides as a 

product of combustion are transformed to polymers and cross-linked random organic 

structures as the ageing process progresses. This results in the formation of insoluble 

materials and eventually deposits. When it stays longer in the lubricant, it can cause 

some problems in engine environment. Dispersants are molecules that are used to 

disperse or suspend deposit-forming contaminants such as soot and sludge, which 

cause increased viscosity, abrasive wear, and filter clogging problems. Dispersants 

have polar central group and non-polar tail group(s). The polar group in the middle 

of dispersants connects with polar deposits and keeps them suspended in the oil 

according to theory, while the non-polar tail group is predicted to establish a barrier 

that prevents small groups of contaminants from creating bigger aggregates [10], 

[11]. Long polar groups capture organic deposits and maintain them distributed in 

the liquid phase [12].  Due to the steric and electrostatic interactions, the particles 

and associated dispersions are unable to agglomerate. Typically, the polar group of 

the dispersant contains oxygen or nitrogen especially in the alcohol and amine form 

that can form hydrogen bonds with the polar groups. 
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Figure 1.2. a) Schematic representation of groups of dispersant molecule and 
mechanism, b) steric repulsion of engine oil contaminants surrounded with 
dispersant molecules.

It was proposed by experimentalists that dispersants work through a steric stability 

mechanism to prevent agglomeration. In steric stability mechanism, the tail acts as a 

hydrophobic barrier layer to prevent attraction between insoluble particles, once the 

polar group has been adsorbed onto the fine particle's surface. As shown in Figure 

1.2. for the single tail dispersant, this differentiates the small particles and prevents 

them from interacting each other and growing in size[5], [13], [14].

Dispersant activity was determined to be dependent on the concentration and that is 

the reason why dispersants have one of the highest additive rates in a lubricant oil 

recipes. The effect of dispersant ratio on performance is highlighted in Figure 1.3. 

After a 288 hours duration, particle development in three different drain oils were 

demonstrated in Figure 1.3. The dispersant concentrations in these formulations were 

1.0, 2.3, or 5.0 mole percentage, demonstrating that higher ratios prevent particle 

development more successfully  [5].
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Figure 1.3. Sludge particle growth demonstration, reproduced by permission of [8]. 

Ashless dispersants are generally derived from hydrocarbon polymers, usually 

polybutene. Ashless dispersants, as their name implies, do not leave any ashes in the 

engine. Succinimides are the most widely utilized dispersants in today's engine oil 

formulations. The most prevalent dispersants utilized in the oil industry today are 

polyisobutylene succinimide based ones. A polyamine head and a polyisobutylene 

(PIB) stabilizing tail with one, two or three succinimide bridges form these 

structures. The reaction of a polyisobutylene succinic anhydride (PIBSA) with a 

polyamine result in the creation of polyisobutylene succinimide dispersants. The 

number of amine groups in the chain, reacting with PIBSA, is a critical key parameter 

in succinimide production. The three syntheses for common succinimide amine 

based dispersant structures using the normal ratios of these reactants were 

demonstrated in Figure 1.4. 
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Figure 1.4. Synthesis and structures of a) mono-, b) bis-, c) tris-succinimide 
dispersants.

The ratio of a typical polyamine to PIBSA changes from 1:1 to 2:1 to 3:1, resulting 

in mono-, bis, and tris-succinimides, respectively. The primary amine preferentially 

reacts with the PIBSA unit and water in each case to create an imide group. After all 

the primary nitrogen atoms have been consumed in the tris model, a secondary amine 

can open up the additional anhydride group to generate an amide. In fact, depending 

on the polyamine utilized, branching and cyclic species are present in varying 

proportions. The reduced models given in Figure 1.4. will be used in this study. 

Bis-succinimide and tris-succinimide, with PIB tails at 1000 to 2000 g/mol MW, are 

the most common type of dispersants. The type of amine group in center, PIB size, 

and amount of succinimides (bis vs tris) can all be controlled. Future lubricant 

standards and new engine hardware require the development of new dispersant 

technologies, for which our calculations can provide a roadmap. In this study, 

polyisobutylene-bis-succinimide will be used as a dispersant having two PIB tails at 

1000 g/mol weight and six amine groups in the middle of the chains to elucidate 

dispersion mechanism.
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CHAPTER 2

2 EXPERIMENTAL CHARACTERIZATION

To understand how dispersants and detergents work for deposit control and gain 

insights on dispersants and detergents mechanism of action fundamentally, some 

experimental results were used as guideline in modeling the nanoparticles, 

dispersant, and detergent. These experimental results were provided by Lubrizol 

Corporation. The output of the research may give some directions for developing 

next generation dispersants and detergents.

Dispersancy and deposit tests have strong correlation with IIIH Weighted Piston 

Deposit rating (WPD). Higher WPD number indicates cleaner pistons (Figure 2.1). 

IIH indicates that, the Sequence IIIH Test is a dynamometer lubricant test that uses 

a fired engine to evaluate car engines lubricants for high-temperature performance 

characteristics such as oil thickening, varnish deposition, and oil consumption.

Figure 2.1. Engine piston groove and lands.

3rd land cleanliness is critical for working principal of engines. As given in Figure 

2.2, when piston grooves were examined; in first engine environment Group II base 

oil, in the second engine environment Group II base oil with extra dispersant, in the 

third engine environment Group III base oil were used for deposit control on engine 

rings.
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Figure 2.2. Land cleanliness differences between a) in Group II base oil b) in Group 
II base oil with extra dispersant c) in Group III base oil environments. 

With Dynamic Light Scattering (DLS), which is often used to characterize 

suspensions of separate nanoparticles or aggregates for a variety of analytical reasons 

such as checking product specifications or evaluating dispersion processes[15],  

mean harmonic intensity averaged diameters of insoluble nanoparticles from drain 

oil are measured where the results were given in Figure 2.3. 

 

Figure 2.3. Mean harmonic intensity averaged diameter of pistons a) detergent & 
dispersant effect b) base oil effect. 

WPD numbers of three pistons are determined as 3.8, 4.5, 4.8, respectively. This 

indicates that 3rd piston is cleaner than 2nd, 2nd piston is cleaner than 1st piston. 

Although the usage of Group III base oil gave better results for deposit control, 

Group II base oil usage is more abundant for passenger car lubricant oils. Especially 

with extra dispersant in Group II, deposit accumulation is mitigated. 

In the case of lubricant oil samples from the engine environment were examined by 

Company, samples were characterized by FTIR, XRD, XPS, DLS, Zeta Potential, 

Electron microscopy, Focused Beam Reflectance, Probe Microscopy, and elemental 

0

200

400

600

800

1000

1200

1400

Mean Harmonic Intensity Averaged 
Diameter [nm]

Drain Oil - Base Oil Effect

Formulation in Gr. III
IIIH WPD: 4.8

a) b) c) 

0

200

400

600

800

1000

1200

1400

Mean Harmonic Intensity Averaged 
Diameter [nm]

Drain Oil - Detergent & Dispersant Effect

Formulation in Gr. II 
with extra dispersant
IIIH WPD: 4.5

Formulation in Gr. II
IIIH WPD: 3.8

Formulation in Gr. II 
IIIH WPD: 3.8 

a) b) 



13

analysis. Land deposits and drain oil insolubles were both investigated to see 

differences and similarities between them.

Figure 2.4. SEM image of a) 2nd and 3rd land deposits and b) insolubles from drain 
oil.

In Figure 2.4, 2nd and 3rd land deposit and drain oil insolubles, SEM images were 

given. Similar morphological structures were observed from the deposit formation 

and drain insoluble particles images.

XRD analysis, given in Figure 2.5, indicates that deposits are primarily amorphous 

carbon with traces of silicon carbide.

Figure 2.5. XRD result of the drain insolubles.

a) b

Theta
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Elemental composition analysis showed that land deposits have 72% carbon 25% 

oxygen as mole ratio. The remaining portion mostly composed of magnesium, 

phosphorus, sulfur and very small proportions are zinc, calcium, sodium, aluminum, 

copper and silicon. For the drain insoluble particles, elemental composition gave the 

fact that, there were 74% carbon and 23% oxygen by number of atoms which we 

used in the modeling step. There is a small proportion of other elements shown in 

Figure 2.6. For nanoparticle composition, it was accepted that nanoparticle mainly 

contains 74% of carbon and 23% of oxygen and rest is metal atoms sourced from 

additives.

Figure 2.6. Elemental analysis of a) land deposits b) drain insolubles.

This measurement promotes the idea of deposit and drain insolubles are similar 

structures and have almost the same composition since almost the same ratios were 

obtained.

a) b)
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Figure 2.7. XPS results of a) drain insolubles, b) land deposits.

XPS results given in Figure 2.7 demonstrated that surface is formed mostly by carbon 

and oxidized carbon chain structures.

All the characterization methods pointed out that samples from the engine 

environment and drain insoluble particles, which were causing deposits on the engine 

pistons, have similar molecular structures. 

It is proposed that aggregation of drain insoluble nanoparticles creates larger 

insolubles in the engine oil which will form deposits that clog the piston lands. For 

foresight, controlling the generation and colloidal stabilization of insolubles at initial 

stages can be the key for the deposit control. 

For further understanding and elucidating the role of dispersant, the difference was 

shown by using TEM. In the second sample given in Figure 2.8, extra dispersant was 

added to the oil. Dispersion of insolubles showed significant improvement by adding 

extra dispersant. This was the first time to display the contribution of dispersant in 

oil.

Binding Energy (eV) Binding Energy (eV)

a) b)
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Figure 2.8. TEM images of a) engine oil b) with extra dispersant. 

Both detergents and dispersants have a similar role to disperse insoluble particles in 

the engine oils. As a result of these observations on the dispersant mechanism, the 

working mechanism of detergents were also studied with computational methods. 

The working mechanism of detergent and dispersant were unknown at molecular 

level and aggregation have never been studied theoretically in the literature. The 

results of experimental data, such as C/O ratio in the insoluble nanoparticles, have 

been utilized as a source of computational chemistry studies. In the light of these 

experimental results provided by the Lubrizol Corporation, this computational study 

and thesis were conducted as a part of collaboration between Technology Transfer 

Office of METU and Lubrizol Corporation. 

 

 

 

 

 

 

 

  

a) b) 
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CHAPTER 3  

3 THEORETICAL AND COMPUTATIONAL CHEMISTRY 

Chemistry studies the structures of matter such as atoms, molecules, electrons, and 

nuclei. It also examines the composition, reactivity and physicochemical properties 

of matter. Since there are many different compounds with different compositions and 

different nuclear positions in nature, nowadays scientists focus on chemistry with 

enthusiasm to design new molecules and their inter- or intramolecular interactions. 

Theoretical chemistry is a branch of chemistry in which mathematical approaches 

are utilized to describe chemical processes using laws of physics. One of the well-

known goals of theoretical chemistry is to discover the most stable spatial 

distributions of atoms in molecules. Furthermore, theoretical chemistry can be used 

to determine a molecule's chemical and physical properties, such as relative energy, 

dipole moment, spectroscopic properties such as vibrations, descriptors such as 

hardness, softness, reactivity as well as photochemical properties such as excited 

state properties. 

There are only numerical solutions found by solving several mathematical equations 

in multi particle (complex) systems in theoretical chemistry. Powerful and fast 

computers can answer these types of mathematical equations. Computational 

chemistry is a relatively new discipline of chemistry that has emerged as a result of 

the technology of computers. Rather than establishing a new method, the 

fundamental goal of computational chemistry is to acquire results for chemical issues 

using the existing quantum chemistry and molecular mechanics methods. As a result, 

computational chemistry is considered as a computer application branch of relatively 

older theoretical chemistry. Despite the fact that computational and theoretical 

chemistry are sometimes regarded as separate disciplines, there is a strong link 

between them. As a result of computational calculations, theoretical approaches can 
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be developed, while new theoretical approaches support computational topics [16]. 

chemistry has entered a new stage, with the goal of being no less than full partner 

chemistry besides the chemical experiments [17].  

In computational chemistry, important results for the molecules consisting of 

hundreds of atoms depending on the given accuracy can be extracted. However, the 

challenge is to choose convenient theoretical methods for complex systems to be 

studied and evaluate them. 

Multiscale modeling is relatively new area involves processes at different scales. 

Processes at different scales are governed by different physical laws. As an example, 

quantum mechanics and classical mechanics have different length and time scales. 

While Newton  Laws are used for molecular dynamical structures, Schrödinger 

equation is defined to the systems in quantum mechanics models where electronic 

properties of structures are used with much more details [18]. Small-scale models 

should use theories that provide more detailed and more accurate information about 

the system. As the size of the system increases, information loss occurs, however 

there is an opportunity to run longer and large-scale simulations. In addition, the 

boundaries between different scales vary depending on the system [19]. Time and 

length scale of multi-scaling approach can be summarized as in Figure 3.1. 
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Figure 3.1. Multiscale modeling of materials by using different time and length 

scales with the different methods.

Requirements for parallel computation for larger scale system sizes have increased 

due to the complexity and number on calculations per simulations such as integrating 

the equations of motion. From this perspective, computational chemistry 

experiments have shifted from large-scale complex tests to multiscale modeling 

methods to also reduce information losses in large-scale computations. In multiscale 

models, while moving from each scale to the next, the small-scale system is verified, 

and the models are prepared for the larger system [20].

Some of the advantages of multiscale modeling can be ordered as follows: Multiscale 

modeling reduces product development time, produces more realistic system with 

accurate designs, reduces the number of large-scale model experiments which have 

higher computational costs, assists in the development of new materials [20]. 

Multiscale modeling simulations can be classified at three main methods: quantum 

mechanics calculations, molecular mechanics calculations and coarse-grained 

simulations [21].
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3.1 Quantum Mechanics Calculations (Electronic Structure Method) 

First principle quantum chemical methods cover ab-initio and density functional 

theory. The Nobel Prize in chemistry was awarded to Walter Kohn and John Pople, 

demonstrating the great potential and significance of first-principles quantum 

chemical studies in today's chemistry research. Walter Kohn's contribution was the 

introduction of the new density functional theory (DFT) approach, whereas John 

Pople's contribution was the development of the quantum chemical procedures for 

more systematic and practical use in chemistry [22] [24]. 

First principles quantum chemical calculations have generally been unsuitable for 

larger molecules due to their high processing requirements. However, the findings 

of simpler methods, such as the force-field based molecular mechanics method, vary 

greatly depending on the parametrization. Because first principles approaches do not 

require empirical calibration of parameters, they can be used for any molecular 

system or property, even if no experimental data is available. Therefore, they have 

the potential to produce more accurate results than classical methods, considerably 

increasing the accuracy of computational research in this field [22]. In addition, the 

motions of electrons are considered in quantum chemistry (or electronic structure 

method), which concern the computation of molecular electronic structures that are 

not covered in classical methods. 

Quantum mechanical methods are based on the solution of the time independent 

Schrödinger Equation (Equation 2 and 3) [25], [26]. 

                                                                                                          (2) 

                                                                                                                            (3) 

Where  the Hamiltonian operator  is the sum of the 

kinetic energy and the potential energy of the system. From the first principles, the 

Schrödinger wave equation describes the motions of electrons and nuclei in a 

chemical system. In a stationary quantum system, the Schrödinger equation defines 
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the spatial probabilities corresponding to the energy levels [27]. The electron 

distribution also known as orbitals and their energies in the molecule can be 

represented as the wave function, which is a mathematical function. As an example, 

the electron distribution along the molecule can be used to determine polar and 

nonpolar parts of a molecule. In addition, since the Schrödinger equation can only 

be solved accurately for the hydrogen atom, all quantum chemical approaches must 

be approximate. 

Two groups of quantum chemical first principle methods were used widely: the pure 

- nctional Theory (DFT) which is used in this 

study. 

3.1.1 Ab-initio Calculations 

Ab-

from the bottom up with no experimental input in the equations except atom types. 

These calculations use only Schrödinger equation, physical constants, and atomic 

numbers in the chemical systems. The Hartree Fock (HF) method is the most basic 

ab-initio method. Local deviations of the electron distribution are ignored in the HF 

approach because each electron only sees the average field of the other electrons. As 

a result, HF excludes electron correlation, which lowers the reliability of the 

approach [22], [28], [29]. Post-HF methods such as Moller-Plesset, Coupled Cluster, 

Configuration Interaction are very accurate as well as highly computationally 

expensive methods.  

3.1.2 Density Functional Theory 

Density Functional Theory (DFT) is an alternative ab-initio calculation method in 

which the total energy is defined in terms of total electron density rather than the 

wave function, where electron correlation is still considered. 
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The DFT is in fact based on two studies that Hohenberg and Kohn in 1964 and Kohn 

and Sham in 1965 [30], [31]. The first Hohenberg-Kohn theorem prove that, the 

external potential energy and consequently the total energy and all of the system's 

attributes is a unique functional of the ground state electron density, n0(r). 

Consequently, the total energy function, E(n), can be expressed in Equation 4 as 

follows: 

                                                                             (4) 

Where n is the function of electron density, F is internal electronic energy and Vext 

is external potential energy. 

According to the second Hohenberg-Kohn theorem, minimizing the energy 

functional with respect to the electron density gives the system's ground state energy 

as in Equation 5. 

                                                                                                      (5) 

Hohenberg Kohn theorem states that the actual electron density corresponding to 

the complete solutions of the Schrödinger equation is the one that minimizes the 

energy of the overall functional. All the properties can be calculated when the ground 

state electron density is known according to the theorem. 

Kohn Sham theorem is the very important part of the modern DFT calculations [31]. 

The Kohn-Sham potential, commonly abbreviated as V(r) is the local effective 

(fictitious) external potential that the non-interacting particles move in to define the 

Kohn-Sham equation. They have the single particle character of the Schrödinger 

equation. The Kohn-Sham equation main principle is to build the single-particle 

potential V(r) such that the density of the non-interacting system is equal to the 

density of the interacting system (Equation 6). 

                                                                                 (6)        

Where the term xc is the exchange-correlation potential. 
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In summary, the main principle DFT is to characterize a molecular system directly 

through its density rather than first determining the electronic wave function. 

However, the functional form of the energy density is unknown. As a result, the 

common technique is to estimate it using various model functionals. B3LYP is one 

of the most extensively used model functionals [32]. Fitting to atomic or molecular 

data is a typical method for determining the precise form of density functionals. 

Thus, DFT is not exactly an ab-initio method, although is referred as such [33]. Since 

DFT is computationally more efficient than all electron correlated ab-initio 

techniques, it can be used to study larger molecular systems. However, one of the 

primary weaknesses of density functionals is their inability to account for accurate 

dispersion energy resulting from the correlation between changes in the electron 

distribution of nearby molecules. This problem has recently been solved by 

dispersion corrections [34].  

3.2 Molecular Mechanics Calculations 

These methods usually use a force field, which is a parametric function of the 

locations of the nuclei, can be utilized to determine the energy of a molecular system 

in any spatial distribution. These parameters include atomic mass and charges, 

Lennard-Jones parameters, equilibrium values of bond lengths, bond angles, dihedral 

and inversion angles. Classical methods are computationally efficient and typically 

used on larger molecular systems. 

Monte Carlo and Molecular Dynamics type classical simulations are the most used 

approaches for molecular mechanics calculations in complex systems. 
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3.2.1 Classical Monte Carlo Approximation 

The Monte Carlo method is a mathematical problem solving technique. The method 

is simply a statistical approach to the analysis of differential equations, which can be 

found in a variety of natural science fields [35]. It is a class of numerical computation 

algorithms which are used to obtain several numerical results with a large number of 

repeated random samplings. Monte Carlo models predictive systems based on 

random numbers. It is an approach used in the fields of static simulations, 

distribution functions, numerical analysis, atomic and molecular physics. 

The approximation involves using a large, but finite number of interacting particles 

to approximate distribution by using energy and structure criteria. One may 

undertake a limited number of experiments to come up with a sample of a probable 

origin. As an example, in Metropolis Monte Carlo method [35], trial configurations 

are generated without any bias. To illustrate, the probability of displacing a molecule 

from 10 to 11 Å in the x direction is the same as the probability of displacing a 

molecule from 11 to 12 Å. Obviously, the probability of displacing a molecule from 

10 to 11 Å in the x direction could equally be halved, provided twice as many of 

these attempts are accepted. It is also possible to generate trial configurations in such 

a biased way such as configurational bias Monte Carlo method. 

3.2.2 Molecular Dynamics (MD) Simulations 

Molecular dynamics (MD) simulation is a computational approach of a general view 

of statistical mechanics. MD simulations are used to determine equilibrium and 

dynamic parameters of complicated systems that cannot be calculated analytically as 

a complement to experiment. 

Molecular dynamics simulation is a classical Newtonian method for studying the 

structures and characteristics of materials at the atomic level. It calculates particle 

positions over time using the classical Newton's law of motion. The length scale of 
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molecular dynamics simulations is around tens of nanometers, and the simulation 

time scale is tens of nanoseconds. 

Surfactants and aggregates have been studied using molecular dynamics simulations 

throughout the past decade. The interactions between particles in molecular 

dynamics simulations are driven by a special type of potential energy function, often 

known as a force field, that includes both bonded (bond length, bond angle, dihedral, 

etc.) and non-bonded (van der Waals and Coulombic) interactions or parameters.  

The force fields can be investigated in three class. Class I force fields, quadric force 

fields, do not include bond stretching and angle bending correlations which are 

simpler forms of the calculations. Some of the examples of Class I force fields are 

AMBER, CHARMM, GROMOS, OPLS. Class II force fields include the potential 

energy for bonds and angles by cubic and/or quartic terms. They also include 

intramolecular forces and cross-terms that describe the coupling of adjacent bonds, 

angles, and dihedrals. Bond and angle vibrations can be reproduced more accurately 

by using higher-order terms and cross terms to describe interactions. Some of the 

examples of Class II force fields are PCFF, COMPASS [36], UFF [37], MM2, MM3. 

Class III force fields add special effects such as polarization, stereo-electronic 

effects, electronegativity effects to their calculations for use in organic chemistry. 

AMOEBA, DRUDE are the examples of them [38], [39].  

To study deposit control by Lubrizol detergents and dispersants in base oil, 

COMPASS force field was selected in this thesis study due to its parametrization of 

all functional groups including anionic phenyl sulfonate, calcium cation, succinimide 

group and all functional groups of insoluble nanoparticles. It is the abbreviation of 

Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies 

and indicates a breakthrough in force field approaches in terms of technology. It is 

one the first ab-initio force field that can accurately predict gas phase and condensed 

phase features for a wide range of molecules and polymers. It is also the first high 

quality force field which include both organic and inorganic material parameters. 
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For MD simulations, a sensitive simulation protocol is applied to ensure not only the 

equilibrium phases and time integration, but also proper application of boundary 

conditions, positioning of solvent and particles, and the computation of non-bonded 

terms. This sensitive simulation protocol is also useful for monitoring the 

temperature and energy fluctuations for detecting systematic deviations or sudden 

change, which could signal numerical difficulties. Choosing the appropriate 

summation method and ensemble is a part of this sensitive protocol. The Ewald 

summation method [40] is a way of calculating non-bond energy in periodic systems. 

Because the inaccuracy associated with cut-off approaches is substantially bigger in 

an infinite lattice, crystalline materials are the best candidates for Ewald summation. 

The approach can also be used on amorphous solids and liquids. 

The constant energy surface of a phenomenon can be explored by applying Newton's 

equations of motion. On the other hand, the most natural events occur when a system 

is subjected to environment changes such pressure and heat exchange. Under these 

conditions, the system's total energy is no longer conserved, needing the use of more 

complex molecular dynamics. Keeping some state variables (energy (E), enthalpy 

(H), number of particles (N), pressure (P), stress (S), temperature (T) and volume(V)) 

constant, different statistical ensembles were created. The mean or change of these 

quantities in the ensemble created can then be used to compute a variety of structural, 

energy, and dynamic properties. There are generally four ensembles are available in 

simulation software packages: constant temperature and pressure (NPT), constant 

energy and volume (NVE), constant pressure and enthalpy (NPH), constant 

temperature and volume (NVT). In this study NVT ensemble system was used. 

Controlling the thermodynamic temperature gives the constant temperature 

and volume ensemble (NVT), also known as the canonical ensemble. When 

conformational searches of models are performed without periodic boundary 

requirements, this ensemble is appropriate. In periodic boundary conditions, volume, 

pressure, and density are identified and constant-pressure dynamics can be 

performed by using barostats such as Berendsen, Andersen and Langevin. To control 

temperature of the system, there are some thermostat methods. Nosé dynamics [41]
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[43] is a methodology for doing constant temperature dynamics that creates real 

canonical ensembles. The Nosé-Hoover formalism is based on Hoover's simplified 

reformulation, which eliminates time scaling and produces real-time trajectories with 

equal time intervals. 

3.3 Coarse-Grained Simulations 

Coarse-Grained (CG) models can cover length and time beyond the all-atom model, 

since all-atom MD simulations usually takes a longer time and length to characterize 

materials and examine their behavioral properties. Molecular simulations have 

generally more widespread applications at all atom models, which limits the 

simulation in terms of length at nanometers and simulation time to nanoseconds. To 

prevent these limitations, coarse-grained simulations are developed in the last two 

decades. CG models were shown to be particularly effective in extending the length 

scale to micrometers and time scales to microseconds accessible by simulations. The 

main purpose of coarse graining is to reduce the degrees of freedom. Thus, the 

number of the variables and the number of interactions between the system decreases 

[44]. It eliminates time and length limitations as the infinite number of possible 

interactions are both reduced and cut-off distances changes in coarse-grained 

simulations. Here, it is crucial to relate coarse-grained results as closely as possible 

to lower scale simulations by better mapping and bridging [45]. 

To create coarse-grained molecular models, chemically bonded atoms are combined 

into beads or other type of units, and the effective coarse-grained interactions are 

derived by averaging over the small details of the atomistic models [46]. Units are 

defined as virtual particles formed by the grouping of fine particles [47]. This model 

reproduces the thermodynamic and structural properties of the atomic model in a 

new analytical dimension [44]. Four-six heavy atoms or fine particles can be 

represented by one bead according to most of the models. For example, a coarse-

grained water particle, that is, one bead, contains four water molecules [45].  
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The CG model is kept relatively simple to promote applications for observable sizes. 

It is made to be quick, precise, useful, and flexible. There are only a few different 

levels of interaction among the few known categories of coarse-grained units. There 

are several different approaches to coarse graining. In this study, the dynamic mean-

field density functional method was used as method. The Mean Field Theory (MFT) 

examines how high-dimensional random models behave. The function of MFT is to 

substitute an average interaction, commonly referred to as a molecular field, for all 

interactions in every particle. This process reduces the number of calculated particles 

that are affected. Due to the simplicity of MFT problems, it is possible to get a lower 

computing cost [48]. Moreover, dynamic mean-field density functional method is 

more suitable for fluids such as oil phases. 

3.4 Aim of the Study 

From the experimental analysis shared by the Lubrizol Corporation, it was found that 

deposits are build-up by aggregation of nanosized insoluble particles in the engine 

grooves and pistons. Dispersant and detergent have significant role to disperse and 

stabilize these insoluble particles. The results provided by the company were used as 

input and guideline in this thesis study. 

The objective of this study was to understand molecular mechanism of nanoparticle 

aggregation and the role of different functional groups on detergent and dispersant 

molecules such as amine and succinimide groups of dispersant molecules and 

sulfonate head group of detergent molecules to mitigate this aggregation. Thus, 

computational chemistry methods were applied to elucidate molecular mechanism. 

In Chapter 4, computational methods at different scales and qualities were explained 

that were used for multiscale modeling. These methods were first principle 

calculations, molecular mechanics calculations, and coarse-grained models. In 

Chapter 5, all thesis study results were presented and discussed in detail.  
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CHAPTER 4  

4 COMPUTATIONAL METHODOLOGY 

In the fields of soft matter and fluid science and engineering, molecular modeling 

and simulations are important instruments. Experimentally observed micromolecular 

structure, dynamics, thermodynamics, and microscopic and macroscopic features 

can all be predicted and explained using these computational methods. Simulations 

can help inform, guide, and complement activities in materials design and discovery, 

thanks to recent increases in computational power. 

This increased power of computational simulations must be used properly. In 

addition, it is necessary to obtain meaningful results and to ensure the validity and 

reproducibility of these simulations on lubricant oils in this study. 

It was demonstrated in this thesis how recent improvements have transformed this 

discipline from a descriptive to a predictive approach in order to better understand 

the deposit control mechanism. It was also be demonstrated how to model the 

properties and functions of lubricant oils under realistic limitations. To characterize 

the physics and chemistry that regulate the properties and processes of lubricant oils 

under realistic temperature and pressure circumstances, a suitable linkage of 

electronic-structure theory and statistical approaches is required. For instance, 

electrostatic potential surface of detergent head group is determined from electronic-

structure theory. Additionally, mixing energies of dispersants and detergents with 

ultrafine nanoparticles are calculated from statistical methods. Regardless of the 

technology used to combine the individual scales, a key feature of a true multiscale 

simulation methodology is that the constituent models at various resolution levels 

are consistently linked. This scale-bridging necessitates the deliberate construction 

of individual models to ensure thermodynamic and/or structural consistency. 
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Starting with first-principles calculations and transferring their precise results to 

parametrize higher-scale methods like MD simulations would require a careful 

transition among distances and methods. Each step toward a larger scale needs an 

increase in system size, length scale, and time scale, as well as a simplification of 

theoretical models by losing as little accuracy as possible. Mainly MD simulations 

and supporting DFT calculations were performed in order to explain the mechanism 

of deposit control by using dispersants and detergents, to evaluate interactions, 

mixing energies, and free energy of solvation. At last, coarse-grained simulations 

were performed for investigating larger time and length scale experiments.  

4.1 First Principle Calculations 

DFT was used to compute molecular properties such as frontier orbitals, atomic 

charges and pairwise interaction energies between the base oil and additives of 

lubricant oils with the components of insoluble particles in order to explain observed 

aggregations and to identify phase organizations such as PIBSI blocks or detergent 

head and tail groups. To define very accurate interactions, short model oligomers 

representing lubricant components was used such as phenyl sulfonate head group 

and alkyl tail with six carbon atoms. 

From a vast number of molecule configurations sampled by statistical sampling 

method, energetically advantageous starting structure pairs with possible strong 

interactions will be identified. At least five initial structures were determined for 

each pairwise interaction type. B3LYP exchange-correlation functional with DNP 

level was used to determine lowest energy structures and interaction energies to 

evaluate pairwise interactions. Tkatchenko-Scheffler (TS) [49] parameters were 

applied for vdW dispersion corrections since noncovalent forces, such as hydrogen 

bonding and van der Waals (vdW) interactions are important in deposit formation. 

Interactions of detergents and dispersants with model particles were calculated by 

using same method to understand effect of competitive interactions. The accurate 

DFT based pairwise interactions between different groups on insoluble particles, 
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base oil, dispersants, and detergents shed light on the general self-organization in the 

system as well as helpful to prepare initial structures for the MD simulations. 

4.2 Molecular Mechanics Methods 

After first principle calculations, molecular mechanics methods were applied to the 

periodic systems with multi-components of the engine oil which forms the main body 

of this thesis study. 

At first, an insoluble nanoparticle was modelled, which was one of the most 

challenging parts of the study. It was constructed many times manually, first as a 2-

3 nm sized rigid spherical amorphous SiO2 type particle, then the structure was 

changed to softer amorphous random structure at the same size, since experimental 

studies points out the flexibility of the sooth and sludge. Due to the inflexible nature 

of the nanoparticle structure, the errors related to the bond lengths and energy jumps 

of the nanoparticles were avoided by modeling new structure in the first simulations. 

In addition, aggregation these nanoparticles were tested both in vacuum and oil to 

validate accuracy of the model. Other important test criteria such as carbon/oxygen 

ratio and high temperature stability were also tested for the insoluble particle model. 

In the molecular mechanic methods, COMPASS force field gave better result and 

validated by three criteria. First of all, it covers parameters for all functional groups, 

including anionic sulfonate head group and assign very similar atomic charges with 

DFT calculations. Secondly, it reaches 0.86 g/cm3 experimental density in constant 

pressure simulations of pure oil cells. At last, COMPASS force field recreates 

pairwise interactions observed in DFT calculations successfully, such as aggregation 

of nanoparticles, hydrogen bonding between amine groups and insoluble particle 

surface. Cut-off distance at 12.5 Å was used for the van der Waals interactions and 

the electrostatic energy calculated by using the Ewald summation method with 

accelerated convergence with COMPASS force field. 
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Many different MD simulations were performed including cells only with base oil; 

cells only with nanoparticles in vacuum; cells with base oil and nanoparticles; cells 

with base oil, different number of nanoparticles and different number of detergent 

molecules; cells with base oil, different number of nanoparticles and different 

number of dispersant molecules. To generate initial structures for MD simulations, 

Monte Carlo type statistical calculations were performed to pack oil molecules and 

additives into a cell where insoluble nanoparticles were already added. As an 

example, into a unit cell with only nanoparticle, dispersant and detergent molecules 

were packed by Monte Carlo method by 2000 steps followed by molecular 

minimization, separately at different numbers. By this way, cell structures with the 

lowest energies among the 2000 cells were found where the dispersant and detergent 

molecules are at their most probable positions on the nanoparticle. Packing 

simulations were then repeated for these cells for the addition of base oil to the cells 

with insoluble nanoparticles coordinated detergent and dispersant structures at the 

surface. The aim of these two step addition was to find out where dispersant and 

detergent molecules would most likely position on the nanoparticle in the base oil 

matrix. 

The unit cells containing different numbers of nanoparticles, base oil, detergent, and 

dispersant were minimized for 5000 steps, followed by MD simulations. MD 

simulations with 2 ns total simulation time and 1fs steps were performed at NVT 

ensemble with Nose thermostat at experimental engine temperature, 423 K, to 

equilibrate dispersant-detergent-base oil-model particle interface. 

Some of these structures were also simulated in the LAMMPS program by exporting 

cells and simulation parameters in .car  and .mdf  formats and results were 

evaluated visually in the VMD program.  

Distances at final structures, radial distribution functions (RDF), mean square 

displacements (MSD), and length evolution with time analysis were made to 

examine the aggregation behavior of nanoparticles in the simulated structures and to 
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determine the working mechanisms of detergents and dispersants in the base oil, and 

to express them quantitatively. 

4.2.1 Calculation of Pairwise Interaction Energies based on the 

Molecular Mechanics Calculations 

is a thermodynamic property that describes the miscibility character of the 

two constituents like modeled insoluble nanoparticle and dispersant/detergent. The 

free energy of mixing ( mix) per mole for molecules is derived using Flory Huggins 

Theory in Equation 7. It is assumed that the detergents and particles are randomly 

distributed, and all lattice sites are occupied. The volume fractions of the components 

i) and the degree of oligomerization of component i, ni are used to compute the 

mix of lattice sites [50]. 

                                                                                             (7) 

The combinatorial entropy is indicated by the first two terms. Because this 

contribution is always negative, a mixed state is preferred over pure components. 

The last term represents the free energy resulting from the interactions. This term 

 calculating the 

thermodynamic ergent or dispersant 

with nanoparticles, which has a significant impact on aggregation, can be analyzed. 

As an example, interaction parameter between particle and detergent were calculated 

he Equation 8, 

where Vavg is the average volume of molecules Particles Detergent are the 

solubility parameters of model particles and detergents, respectively. The solubility 

Particle Detergent, respectively. 

                                                                                                    (8)                                                   
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i- j)2 between two constituents is more than 4 J/cm3, they are 

considered to be immiscible. Solubility parameters will be computed using the molar 

cohesive energy, Ecoh, which is calculated by subtracting the total non-bond energies 

of isolated (Eisolated) and periodic (Eperiodic) states, as shown in Equations 9 and 10.  

The cohesive energy density is Ecoh/V, while the amorphous cell volume is V. MD 

simulations in amorphous cells in the NVT ensemble will be used to calculate these 

energies [51]. One by one, the amorphous cells for every dispersant-detergent-base 

oil-model particle were built. 

                                                                                               (9) 

                   (10) 

Free energy of solvation will be calculated for nanoparticle in base oil with detergent 

and dispersant, via the coupling parameter and thermodynamic integration method. 

After cell packing and geometry optimization, the free energy of solvation was 

calculated using a three-step thermodynamic integration sequence. As the first step 

of the free energy of solvation calculation, the model with either detergent, dispersant 

or base oil is discharged in the vacuum. The ideal contribution to the free energy of 

solvation, which is represented as the free energy change, will then be determined. 

Following that, the model particle will be contacted to detergent, dispersant, and base 

oil, and the Van der Waals (vdW) free energy change for discharged interaction will 

be determined. Last, the electrostatic impact to the solvation free energy will be 

calculated by charging up the solvated and discharged model particle in the 

detergent, dispersant, and base oil. As a result, total free energy of aggregate 

solvation by detergent, dispersant, and base oil is computed as the sum of 

contributions from the ideal term, vdW, and electrostatic solvation free energies. 

The modified Flory-Huggins Theory can then be used to predict the miscibility 

behavior of the sulfoxides with detergent, dispersant, and base oil with model 

particle. The compatibility of detergent, dispersant, and base oil with model 

nanoparticles were investigated using statistical mechanics methods to calculate 
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binary interaction energies in vacuum. The mixing energy (Emix) between detergent-

dispersant-base oil and model particles, denoted as i and j, was computed using a 

Flory-Huggins model and force field-based molecular mechanics approaches to 

accomplish that aim. For each pair of detergent, dispersant, and base oil, and 

aggregates, Monte Carlo-type minimizations of a large number of cluster interactions 

were performed to get the number of surrounding components, known as 

coordination numbers, Zij, and the binding energies, <Eij>. The average binding 

energy was computed by producing 108 configurations at room temperature using 

the average of the weighted distribution function, Pij(E) as shown in Equation 11, 

and the coordination numbers, Zij, were obtained by generating 106 clusters. 

                                                                                           (11) 

Emix is defined as the free energy difference due to attraction between the mixed 

lubricant components and the model nanoparticles as shown in Equation 12. 

                                   (12) 

In this method, atomic charges on a solute molecule in a vacuum (ideal gas) are 

id) as a first step, solute molecule without any atomic charge is brought 

vdw), finally, 

the charges on the solvated molecule are added again to calculate electrostatic free 

el) as demonstrated in Figure 4.1. 

 

                                                          (13) 
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Figure 4.1. Thermodynamic cycle.

There are vdW and electrostatic interactions between a solute molecule and the 

solvent. In thermodynamic cycle, both can be turned on and off at the same time in 

by removing charges, however this can cause instabilities since opposite charges can 

collapse if the van der Waals repulsion that protects them is weakened. However, by 

eliminating the charges before trying to scale the van der Waals interactions, the 

problem can be avoided [52]. This method can be thought of as a thermodynamic 

cycle in which the gas molecules' charges are first removed, then the gas molecule 

is coupled to the solvent using just van der Waals contacts, and finally the charges 

are turned back on the solvent environment.

4.3 Coarse Graining Method

Mesoscale modeling utilizes classical simulation techniques to coarse-grained 

systems without compromising the underlying molecular level interactions. Coarse 

graining methods are generally similar to all-atom molecular dynamics simulations 

where the basis of the simulation technique is calculating the dynamics of a system 

by integrating the equations of motions of all the units in the system. The major 

disadvantage of all-atom molecular dynamics simulations and some of the coarse 

graining methods, such as Dissipative Particle Dynamics [53] or Martini type [47]

coarse-grained force fields, is that they include many small scale fluctuational 

motion of atoms than is necessary for an understanding of many physical processes. 

This process requires high performance computer processor speeds and large 
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memory capacities that currently limit its applicability to a few microseconds of 

molecular motion.  

We used a faster method in this study for the numerical calculation of dynamic 

mesoscopic phenomena in copolymer melts in three dimensions was developed by 

Fraaije et al.by adapting mean-field density functional theory to coarse-grained 

simulations [54]. An important aspect of this method is the time-integration of 

functional Langevin equations, where the thermodynamic driving forces are adapted 

from a Gaussian chain molecular model. Different than other coarse graining 

methods, it is a phase dependent simulation more than spherical bead or repeating 

unit dependent model. This method still finds interactions for mesoscale units, 

capturing the essential physics of the system under study [54], however the units are 

field densities instead of beads. In the dynamic coarse-grained variant of mean-field 

density functional theory, which states that there is a one-to-one mapping between 

the distribution functions of the system, the densities, and an external potential field. 

In this method, a real system, that is, a system with interactions, can be equated to 

an ideal system, that is, one with no interactions, using an effective external potential 

created by other fields. This theory can be used for the large model description of 

fluids such as oil matrix system where every phase is moving and self-organizing in 

an external field. The chain is the fundamental building block of the model in this 

method. In this description, the intra-chain correlations can, in principle, be treated 

by any suitable model. In practice, a Gaussian chain model is utilized because it 

allows a factorization of the interactions, hence is computationally more efficient. 

The non-interacting Gaussian chains are hence the ideal system, and any inter-chain, 

that is, non-bonded, interactions are treated as non-ideal. Inter-chain reactions enter 

into the effective external potential. Unique to the implementation we used, a further 

factorization of this external potential into an electrostatic and dispersive 

contribution. We need only interaction parameter and structure of the system to study 

phase organization. The solubility parameters can be used to derive Flory-Huggins 

interaction values as given in Equation 8. 
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Where Vref is a reference volume, taken to be the molar volume of one of the 

specified units for coarse graining that is actually the mean volume of the two units. 

Then we converted Flory-Huggins parameters into mean-field density functional 

theory input by Equation 14:

                                                                                                     (14)

where -1EIJ is the input parameter. The values of the terms are greater than zero will 

tend to cause phase separation and lower than zero will give phase mixing. In the 

coarse graining of the system, insoluble nanoparticles were created as dendrimer like 

structures since it is not possible to generate random amorphous structures in this 

method. Every 4-6 heavy atoms were mapped into one coarse grained unit. Each 

nanoparticle is created by four types of beads where O is the neutral center, A is the 

nonpolar group, P is the polar group such as ester or ether, R is the highly polar group 

such as 

Figure 4.2. Coarse-grained model of insoluble nanoparticle defined by coarse 
grained units.
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CHAPTER 5  

5 RESULTS & DISCUSSIONS 

Computational methods at different scales were used to obtain theoretical results. In 

addition, literature research was carried out as a first step to model initial structures 

and to determine the most suitable software, methods and algorithms that are used in 

this study. The results of the experimental studies such as TEM and XPS data were 

used as roadmap to understand the aggregation mechanism, to solve working 

mechanisms of the detergent and dispersant which create colloidal imbalance to 

prevent aggregation. The first step of the simulations was to generate initial 

structures of the base oil, dispersant and detergent that were used in the calculations. 

5.1 Molecular and Electronic Structures of System Components 

To be able to model structures observed in the experimental study that are mainly 

base oil, insoluble nanoparticle, dispersant, detergent; it is necessary to determine 

accurate structures. For this purpose, base oil, dispersant, and detergent structures 

were constructed in accordance with the structures used in the literature and data 

sheets provided by the company.  

In this study, six different atoms were present in these structures: carbon, hydrogen, 

oxygen, sulfur, nitrogen, and calcium that are all well-defined in the first principle 

and classical methods. In this thesis, atoms are depicted in different colors in the 

figures for the rest of this text such that: gray balls are carbon atoms, white balls are 

hydrogen atoms, red balls are oxygen atoms, yellow balls are sulfur atoms, dark blue 

balls are nitrogen atoms and green balls are calcium cations. Molecules or atoms are 

given as line, as ball and stick, as all-stick or as CPK style depending on the best 

visualization of the simulation cell. Generally, nanoparticle structure was given in 
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CPK, dispersant and detergent were given in ball and stick, base oils were given in 

line styles. 

5.1.1 Base Oil 

Group II oils was used as base oil in all calculations. In the production of Group II 

base oils, feedstock is converted to saturates, which are high in isoparaffins. Average 

carbon number of isoparaffins and naphthenic groups are between 20  25 [55]. 

Groups II base oils have distinct forms of branching at positions 2, 3, and 4, as well 

as at the carbon chain's center at positions 6 and 7. When compared to structures with 

branching in the middle of the chain, which impose mobility limits, configurations 

with methyl branching at the terminal end of the chain provide more molecular 

mobility or flexibility at low temperatures. High VI properties are favored by 

structures with branching at 2, 3, and 4 locations [55]. In addition, it is also known 

experimentally that there is an alkene structure in the base oil structure and little 

amount of branching. In the light of these information, the base oil structure has been 

built and given in the Figure 5.1, with the formulation of C24H48, and molecular 

weight 336.64 g/mol. Both small percentage of alkene and branching factors were 

considered in our model. Atomic charges were calculated for geometry optimized 

structures by Merz-Kollman based ESP algorithm at B3LYP/6-311g(d) level [56]. 

 

Figure 5.1. Base oil structures with partial atomic charges. 

Base oil is highly neutral and non-polar except the small polarity at the end groups.  
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5.1.2 Polyisobutylene-bis-succinimide (PIBSI) 

In this study, polyisobutylene-bis-succinimide was used as dispersant in all 

calculations (Figure 5.2). Bis- version of succinimide are common besides tri- or 

mono- derivatives. Straight chain amine group between C8-C18 of bis-succinimides 

are made with polar groups of various diameters and nitrogen contents [57]. Typical 

molecular weight of PIB portion at the two tails is approximately 1000  2000 g/mol. 

Typical polyamine structures at the center are with 6-7 nitrogen and 2.5-3 weight % 

dispersant in oil. Amine groups were bridged to the PIB tails via bis succinimide 

linkage. 18 isobutylene repeating units with MW of 1009.90 g/mol was used in our 

model. 

 

Figure 5.2. PIB-bis-succinimide dispersant molecular structure. 

Polyisobutylene-bis-succinimide dispersant have three main groups: 

polyisobutylene (PIB) tails, bis-succinimide group (C4H5NO2) bridge and amine 

central groups. Electrostatic Potential Surface (ESP) and frontier orbitals are shown 

in Figure 5.3.  In ESP surface, electron rich to electron poor regions were depicted 

from red to blue, respectively. As indicated in Figure 5.3, especially oxygen atoms 

in succinimide and nitrogen atoms in amines have the highest electron density 

depicted as red in color. Amine hydrogens and carbons in bis-succinimide were the 

electron deficient groups. According to these results, succinimide and amine groups 

were polar structures, however poly-isobutylene tails are highly non-polar tails. 

HOMO-LUMO orbitals were also concentrated on the amine groups and bis-

succinimide, respectively, which is a strong indication for potential polar interactions 

as well as susceptibility towards nucleophilic-electrophilic attacks to those groups. 
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Figure 5.3. a) Electrostatic Surface Potential, b) HOMO, c) HOMO-1, d) LUMO, 
and e) LUMO+1 structures of dispersant molecule.

Amine center was built with six amine molecules connected to each other with ethyl 

groups as given in Figure 5.4. Partial atomic charges are calculated according to DFT 

calculations at B3LYP/6-311 level that supports polarity of the central amine-bis-

succinimide group.

Figure 5.4. Models of a) amine, b) succinimide, and c) isobutylene portions of PIBSI 
dispersant.

Electrostatic Potential Surface (ESP)

HOMO

HOMO-1
LUMO +1

LUMO 
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b)
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Polyisobutylene-bis-succinimide dispersant real version was modelled for classical 

simulations as given in Figure 5.5 with 18 PIB repeating units on each side. 

Dispersant has 2610.61 g/mol molecular weight with C174H342N8O4 chemical 

formula. 

 

Figure 5.5. Molecular structure of polyisobutylene-bis-succinimide dispersant 
model. 

5.1.3 Sulfonate Detergent 

Sulfonate, which has the most widespread industrial usage, was studied as detergent 

in this study. Besides sulfonate, salicylate and phenate are the other commonly used 

detergents in passenger car formulations that will not be included in this study. The 

hydrophilic anionic group of the sulfonate-based detergent has negatively charged 

sulfonate head groups and a single alkyl chain as tail. Typical commercial sulfonate 

systems have significantly linear chains between C15-C36 [58]. In the direction of 

these knowledge, sulfonate detergent structure was modelled as in Figure 5.6 with 

an alkyl tail with 20 carbons and phenyl sulfonate anionic head group. The chemical 

formula is C26H45SO3, with 437.70 g/mole molecular weight, relatively smaller in 

size compared to the dispersant. 

ESP surface for sulfonate detergent model was given in Figure 5.6 which show that 

all electron rich part is concentrated on the phenyl sulfonate head group. Partial 

atomic charges according to first principle calculations and classical methods based 

on the COMPASS force field provided close results. HOMO is on the head group 

and LUMO was on the alkyl tail as expected. 
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Figure 5.6. Sulfonate detergent a) ESP surface, b) HOMO, c) LUMO structures and 
d) first principle, e) classical method calculations.

5.1.4 Insoluble Nanoparticle

One of the biggest challenges in this study was to model the ultrafine insoluble 

nanoparticles which aggregate to form deposits in the engines. From the results 

provided by Lubrizol Corporation, it is known that this nanoparticle may have many 

functional groups that primary-secondary-tertiary alcohols, ketone, aldehyde, 

carboxylic acid, ester and ether groups. From elemental analysis, approximately 75% 

carbon and 25% oxygen atoms were provided in the structure which have oxygen 

mostly distributed particle surface. Their size is less than 5 nm, they inner structure 

is mainly amorphous, and they have spherical structure.

Since there is no such a molecular information about this aggregated ultrafine 

particle structure in the literature, this model was created manually according to the 

experience and measurements. This is the very first study to model insoluble 

nanoparticle in the literature. 

a)

b) c)

d)

e)
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It has been modeled many times manually and constructed in a way that does not 

give errors due to close bond distances, satisfy convergence criteria for both force 

and energy, having negative total energy and free energy, appropriate for chosen 

force field by computational methods, having experimental C/O ratio, self- with 

each-other. To check the validation of the initial structure, energy was decreased by 

annealing (heating-cooling) cycles that gave stable amorphous nanoparticle. In the 

modeled nanoparticle, oxygen was mainly distributed on the surface and designed in 

accordance with the elemental analysis as shown in Figure 5.7. Chemical formula is 

C300H559O100 and it has 5766.57 g/mol molecular weight with approximately 2.2 

nanometer diameter. 

 

Figure 5.7. Ultrafine insoluble nanoparticle model. 

5.2 Solubility Parameter Calculations 

After modeling all structures in the oil, the first step is to calculate the interactions 

and mixing of these parts with each other. The simplest way to do this is to calculate 

the solubility parameter. Solubility parameters ( ) that are close to each other mix, 

those that are far away do not mix generally.  
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Table 5.1. Solubility parameters of the base oil, polar and non-polar portions of 
dispersant, sulfonate, and Ca+2, and sulfonate. 

 

 

As indicated previously, polar group of the dispersant is amine and succinimide, non-

polar group is polyisobutylene tail. During calculation of the solubility parameter, 

vdW contribution and electrostatic contribution to the solubility were also calculated 

separately. Electrostatic interactions were important for polar groups of the 

molecules. As an example, non-polar part of dispersant has almost zero electrostatic 

contribution. Next, base oil has also almost zero electrostatic contribution due to its 

non-polar structure. It was determined that the solubility parameters of the non-polar 

group of dispersant and oil as well as the polar group of the dispersant and sulfonate 

head group have close values to each other. 

 van der Waals 

contribution 

Solubility 

parameter 

((J/cm3)0.5) 

Electrostatic 

contribution 

Solubility 

parameter 

((J/cm3)0.5) 

Total solubility 

parameter  

((J/cm3)0.5) 

Base oil 17.013 0.874 17.407 

Dispersant (polar portion) 20.341 11.233 23.637 

Dispersant (non-polar 

portion) 

12.304 0.414 12.671 

Sulfonate and Ca+2 10.436 49.213 50.445 

Sulfonate detergent 18.991 23.442 30.439 
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These results promoted the idea that non-polar tail of the dispersant and detergents 

may extend into the base oil while amine and succinimide prefer to interact with the 

polar surface of the nanoparticle. 

The solubility parameter of the nanoparticle has not been calculated because it was 

not possible to construct high number of nanoparticles samples into the many cells. 

However, it was known that its surface is formed by oxygen rich functional polar 

groups. These calculations led us to investigate the interactions of the dispersant with 

other components. 

Hydrophobicity and surface properties of the components were calculated in terms 

of octanol-water partition coefficient (AlogP), solvent accessible surface area 

(SASA), total polar surface area (TPSA), total apolar surface area (TASA), relative 

polar surface area (RPSA), relative apolar surface area (RASA).  Alog P is a measure 

of hydrophilicity or hydrophobicity of a molecule. It shows how easily an analyte 

partitions between the aqueous water and organic phases such as octanol. A more 

polar, hydrophilic chemical will have a lower log P (even negative), indicating that 

it prefers to reside in the aqueous phase [59]. In other words, calculated log P value 

in water vs. a simple organic compound can be used to predict its solubility 

properties in other aqueous and organic solvents [60]. The log P of non-polar, 

hydrophobic molecules will be highly positive, indicating that they will partition into 

an organic phase. Ghose and Crippen's approach was used to calculate the Alog P, 

theoretical approach [61]. Each atom in the molecule was assigned to a class in this 

atom-based approach, with additive contributions.  

To examine the hydrophilic and hydrophobic interactions, dispersant and 

nanoparticle structures were divided into consistent parts since they are large 

structures and consists of groups with different polarities. Dispersants were 

represented by amine repeating unit that is dimethyl amine and hexamer of this 

group, bis-succinimide, polyisobutylene (PIB) monomer and PIB18 at about 1000 

g/mol; detergents were represented by sulfonate group, phenyl sulfonate group; 

functional groups on the insoluble nanoparticle surface were represented by 
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carboxylic acid substituted (Nacid), ketone substituted (Nketone), alcohol 

(Nalcohol) and dialcohol (Nalcohol2) substituted branched alkane groups as given 

in DFT calculations. Base oil was represented by alkyl group with two short 

branching and one alkene groups (C24H48) similar with DFT calculations. 

Calculations showed that oil and PIB groups were the most hydrophobic group with 

the highest apolar surface area. Sulfonate head group of detergents, amine group and 

bis-succinimide groups of dispersants were the most hydrophilic groups that can be 

coordinated polar groups on the nanoparticle surface. It should be noted that although 

the sulfonate head group was highly hydrophilic with highest relative polar surface 

area, detergent was as hydrophobic as base oil at overall due to the alkyl tail with 20 

carbon atoms (Table 5.2). 
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Table 5.2. Hydrophobicity, SASA, TPSA, TASA, RPSA, RASA for the components 
of the system. 

Structures AlogP [63] SASA TPSA TASA RPSA RASA 

Oil molecule 10.47 794.41 0.00 794.41 0.00 1.00 

CH3COOH -0.20 212.70 122.97 89.74 0.58 0.42 

CH3OH -0.36 170.74 69.06 101.68 0.40 0.60 

Nacid 2.71 346.28 76.50 269.77 0.22 0.78 

Nketone 2.15 314.80 47.36 267.44 0.15 0.85 

Nalcohol 2.14 323.00 29.06 293.94 0.09 0.91 

Nalcohol2 1.41 317.06 68.40 248.66 0.22 0.78 

Amine-all -1.50 738.57 131.62 606.95 0.18 0.82 

Amine monomer -0.22 209.51 39.09 170.41 0.19 0.81 

Bis-succinimide 0.40 322.74 103.50 219.24 0.32 0.68 

PIB18 25.50 1523.92 0.00 1523.92 0.00 1.00 

PIB monomer 2.20 260.08 0.00 260.08 0.00 1.00 

Sulfonate head -1.12 237.84 162.41 75.43 0.68 0.32 

Phenyl sulfonate 1.68 339.98 142.51 197.48 0.42 0.58 

Detergent 10.83 978.95 142.51 836.44 0.15 0.85 

 

5.3 Validation of Computational Method and Force Field Approach 



 
 

50 

 

 

Figure 5.8. The unit cell with 366 base oil molecules. 

  

Figure 5.9. Density changes of base oil structure after 50000 step cell optimizations. 
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5.4 Interaction Energies 

5.4.1 DFT Calculations  

All possible interaction energies between components were calculated based on the 

B3LYP/6-31+g(d) level DFT calculations (Figure 5.10). Dispersants were 

represented by amine, bis-succunimide (bis-suc), polyisobutylene (PIB) groups; 

detergents were represented by phenyl sulfonate (Psulfonate) and alkyl tail; 

functional groups on the insoluble nanoparticle surface were represented by 

carboxylic acid substituted (Nacid), ketone substituted (Nketone), alcohol 

(Nalcohol) and dialcohol (Nalcohol2) substituted branched alkane groups, base oil 

were represented by alkyl group by ignoring limited contribution of branching and 

alkene groups. Our calculations showed that strongest interactions are the ones 

formed by phenyl sulfonate on detergent, bis-succinimide groups on dispersant, 

amine groups on dispersants with the functional groups on the insoluble 

nanoparticles. Alkyl groups showed the weakest interactions with the functional 

groups on the nanoparticle surface. Alkyl groups show higher interactions with alkyl 

and PIB compared to their interactions with these functional groups. Although alkyl 

groups have relatively high interactions with amine groups, the interaction of these 

amine groups with nanoparticle surface is much higher. It should be noted that 

number of interactions were ignored here that alkyl-alkyl interactions are dominant 

interactions due to the higher ratio of the base oil in the system.  
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Figure 5.10. Interaction energies (kcal/mol) between components based on the DFT 
calculations.

5.4.2 Pairwise interactions via Molecular Mechanics Methods 

Another calculation that performed is classical calculation of pairwise interaction 

energies between components, shown in Table 5.3. Dispersants have amine, 

succinimide and polyisobutylene parts. Detergent has alkyl and phenyl sulfonate 

part. Base oil has alkyl and alkene groups. The interaction energy between sulfonate 

and phenyl sulfonate was positive since their interaction is repulsive due to the 

negative charge on both groups. Secondly, there was highly negative interaction 
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between amine and phenyl-sulfonate due to the hydrogen bonding between amine 

and sulfonate oxygens. Additionally, between phenyl-sulfonate and succinimide part 

of the dispersant, again there was highly negative interaction due their high polarities 

of these groups.  In this way, this calculation demonstrates how interaction energies 

work and they give opinion to eliminate fewer probable interactions. Moreover, these 

interactions were used to map molecular interactions into the larger scale coarse-

grained simulations. 

Table 5.3. Binary interaction energies. 

i j Eij avg (298 K) 
alkyl6C phenyl -1.19 

alkyl6C isobutyl -0.93 

alkyl6C succinimide -1.46 
alkene6C alkyl6 -1.17 
alkene6C phenyl -1.18 
alkene6C isobutyl -0.94 

alkene6C succinimide -1.55 
amine phenyl-sulfonate -5.33 
amine alkene6C -1.32 
amine alkyl6C -1.29 

amine phenyl -1.48 
amine isobutyl -1.02 

amine succinimide -2.16 
phenyl-sulfonate alkene6 -1.43 

phenyl-sulfonate alkyl6 -1.58 
phenyl-sulfonate phenyl -1.74 
phenyl-sulfonate isobutyl -1.16 
phenyl-sulfonate succinimide -6.40 

sulfonate amine -5.16 
sulfonate phenyl-sulfonate 28.73 
sulfonate alkene6C -0.99 
sulfonate alkyl6C -1.08 

sulfonate phenyl -1.56 
sulfonate isobutyl -0.83 
sulfonate succinimide -6.58 
alkyl6C phenyl -1.19 

alkyl6C isobutyl -0.93 
alkyl6C succinimide -1.46 
phenyl isobutyl -0.92 
phenyl succinimide -2.05 

isobutyl succinimide -1.17 
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5.5 Solvation Free Energy Calculations 

To calculate free energy of solvation a nanoparticle was placed in unit cell fill with 

base oil in Figure 5.11. The solvation free energy was calculated as +32.43 kcal/mol, 

which indicates that nanoparticle does not tend to dissolve in base oil. This is the 

main origin of its self-aggregation, which explains deposit formation. 

 

Figure 5.11. A nanoparticle in a unit cell to calculate solvation free energy of 
nanoparticle. 

5.6 Monte Carlo Simulations 

The cell structures that were used in molecular dynamics simulations were prepared 

by packing calculations based on the Monte Carlo algorithm. In these calculations, 

energy and structure-based criteria were defined to add molecules into the cells. 

Since the nanoparticle-oil-dispersant-detergent mixture model was formed by all 

amorphous structures, it was possible to use random packing of each additive to 

prepare the initial cell structures for MD simulations. The packing of molecules into 

the amorphous cell allowed us to pack a given mixture of molecules randomly at a 

specific loading and density into a three-dimensional periodic cell, with some 

constraints such as energy criteria, close contacts avoiding or ring spearing. An 

empty cell or a cell already accommodate structures, such as a group of 

nanoparticles, can serve as a template structure for packing. The atoms that are 

already in the unit cell were kept at fixed coordinates during the packing process. As 
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a result, free volume around the structure in the cell were filled by this Monte Carlo 

algorithm. In short, it was possible to create cells by packing oil or additives into an 

existing empty or partially filled cells at any mole ratio determined by user. The 

number of molecules packed into the cell were automatically determined by the 

density and weight ratio of the components. 

Two different methods were used in construction of initial cell structures for MD 

simulations. 

In the first method, dispersants and detergents were packed into the cell where only 

nanoparticles were present to validate our packing approach. We showed that, after 

2000 times of packing followed by the geometry optimizations; polar group of the 

dispersant and detergent were coordinated onto the nanoparticle surface at the lowest 

energy cell geometry which agrees with first principle calculations (Figure 5.12 and 

5.13). 

 

              

Figure 5.12. The lowest energy cell geometry which agrees with first principle 
calculations with one nanoparticle and a) one dispersant molecule, b) one detergent 
molecule. 

a) b) 
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Figure 5.13. The lowest energy cell geometry which agrees with first principle 
calculations with two nanoparticles and a) one dispersant molecule, b) one detergent 
molecule. 

Next, this template was used in further packing of the oils into the cells. Oil was 

added to these template cells by using similar Monte Carlo algorithm where the 

dispersant and detergent were already in the cell in their most stable forms. Similarly, 

all the initial cells having different number of nanoparticles were created by oil 

addition to this cell as a final step of construction where sulfonate head group and 

dispersant amine group are on the nanoparticle surface as expected (Figure 5.14). 

        

Figure 5.14. Packing of a) four nanoparticles in a unit cell with b) four dispersant 
molecules followed by c) base oil addition by Monte Carlo calculation. 

a) b) 

a) b) c) 



57

In the second method, dispersants and detergents were added into the cell that formed 

after the oil added first to the cell with nanoparticles. As an example, four dispersant 

molecules were added by Monte Carlo method to these cells followed by the 

selection of lowest energy cell that was depicted in Figure 5.15. In this example, a 

cubic structure with a size of 6x6x6 nm3 with four nanoparticles was used. First, the 

modeled four nanoparticles were placed into the center of unit cell with an average 

distance of 5 Å. As a second step, the base oil molecules were packed into the 

structure with the final density 0.8 g/cm3. There were 232 base oil molecules in the 

unit cell to reach this density. The final density was arranged in a way that it 

increased from 0.80 to experimental 0.86 g/cm3 after the addition of dispersant 

molecules. 

Figure 5.15.a) Placing four nanoparticles in a unit cell, b) packing with 232 base 
oil molecules, and c) followed by four dispersant molecules.

Next, 20 sulfonate anions and 10 divalent calcium cations for charge equilibrium 

were added to the same structure with four nanoparticles, which was then the lowest 

energy structures in base oil-detergent packing is selected for the MD simulations 

given in Figure 5.16. For packing of base oil and additives, over the 1000 cells have 

been constructed. All the cells were optimized for 5000 steps.

a) b) c)
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Figure 5.16. Placing four nanoparticles in a unit cell, b) packing of 232 base oil 
molecule c) followed by ten sulfonate molecules and five calcium cations.

Both methods gave similar initial cell structures. However, first method was selected 

since lower energy structures were reached where detergents and dispersants were 

added first onto the nanoparticle surface followed by the addition of oil packing into 

the cell. In addition, free volume on the polar surface of the nanoparticle was 

prevented by oil molecules that polar groups of dispersant and detergents cannot 

position perfectly on the surface.

After the packing of additives and base oil, geometry optimizations were performed 

for the cell structures. It was observed that the polar succinimide amine groups in the 

middle part are always in interaction with the surface of the insoluble nanoparticle. 

Polyisobutylene tails were extending away from the surface into the non-polar base 

oil. Same result was also valid for the head and alkyl tail groups of the detergents.

Another important result about the dispersant and detergent was that they preferred 

to intercalate between two or more nanoparticles having 0.5 nm distance in the most 

stable geometries. For dispersant molecule, only the amine and succinimide groups 

intercalated between the insoluble nanoparticles. For sulfonate detergent, it was 

observed that sulfonate head groups were intercalating between the insoluble 

nanoparticle interfaces. These observations were also supported by the interaction 

energy calculations.

a) b) c)
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Initial structures were prepared by packing calculations of two, three and four-

nanoparticles systems (Figure 5.17-5.22). Then lowest energy cells were selected for 

molecular dynamics simulations.

Figure 5.17. Two nanoparticle system packed with a) 261 base oil molecules b) base 
oil and two dispersant molecules c) base oil and six detergent molecules and 3 
calcium cations.

The unit cell with two nanoparticles has 5x8x5 nm3 lattice dimensions. First, it was 

packed with 277 base oil molecules, secondly another cell with two nanoparticles 

were packed with 261 base oil and 2 dispersant molecules, and at last a cell packed 

with 269 base oil and 6 sulfonate molecules with 3 calcium cations.

Figure 5.18. Three nanoparticle system packed with 277 base oil molecules in a unit 
cell.

Three nanoparticle unit cell with same lattice parameters has been packed at first 

with only 277 base oil molecules. Then, three, six and nine dispersant molecules 

were packed into the same structure with oil molecules to examine the effect of the 

dispersant density. Number of base oil molecules are 237, 213 and 190, respectively 

for 3-6-9 dispersant systems (Figure 5.19). Due to the long chain structure of the 

a) b) c)
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dispersant, as the number of dispersants increased, the number of base oil molecules 

decreased to provide fixed engine oil density at 0.86 g/cm3.

Figure 5.19. Three nanoparticle system with a) three dispersant and 237 base oil 
molecules, b) six dispersant and 213 base oil molecules, c) twelve dispersant and 190 
base oil molecules.

Next, six, twelve and eighteen detergent molecules were packed into the same cell

structure to examine the effect of the number of the sulfonate detergents (Figure 

5.20). Number of base oil molecules are set 252, 244 and 235 in the unit cells, 

respectively, for six, twelve, and eighteen sulfonate molecules.

Figure 5.20. Three nanoparticle system with a) six detergent and 252 base oil 
molecules, b) twelve detergent and 244 base oil molecules, c) eighteen detergents 
and 235 base oil molecules.

a) b) c)

a) b) c)
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Finally, four nanoparticle systems were prepared. The four nanoparticles were placed 

into the center of 7.5x7.5x7.5 nm3 cubic cell with approximately 5 Å interparticle 

distance between them. The system was first prepared for four dispersant and eight 

detergent molecules, separately in Figure 5.21 and 5.22.

Figure 5.21. Four nanoparticle system a) in cubic cell, b) packing with 728 base oil 
molecules, c) packing with four dispersant and 697 base oil molecules.

Figure 5.22. Four nanoparticle system a) in cubic cell, b) packing with 728 base oil 
molecules, and c) packing with eight detergent molecules, four calcium cations and 
717 base oil molecules.

After completion of all the oil and additive packing calculations for two, three and 

four-nanoparticle systems, the final structures were prepared after the final 5000 step 

geometry optimizations. These final structures were ready for Molecular Dynamics 

Simulations.

b)a) c)

a) b) c)
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5.7 Molecular Dynamics Simulations

Molecular dynamics simulations were initiated by placing nanoparticles into an 

empty cell at size 8x8x8 nm3, followed by geometry optimization at 5000 steps. After 

the calculation of the free energy of solvation for nanoparticles in base oil, it was 

calculated as value 32.43 kcal/mol that the nanoparticle did not dissolve in the base 

oil and aggregate due to hydrophobic and hydrophilic interactions. Not only in base 

oil but also in the empty cell, nanoparticles have agglomerated. The first, middle and 

the last frames of the molecular dynamic simulation of this cell is given in the Figure 

5.23 and Figure 5.24, below. The simulation parameters were set as NVT as an 

ensemble, 423 K as temperature, NHL as thermostat with 1 fs step size and 2 ns total 

simulation time.

Figure 5.23. a) The first, b) middle and c) final frames of MD simulations of 
aggregated four nanoparticles in empty unit cell for 2 ns simulation time.

Figure 5.24. a) The first, b) middle and c) final frames of MD simulations of 
aggregated 4 nanoparticles in unit cell packed with 697 base oil molecules for 2 ns 
simulation time.

a) b) c)

a) b) c)
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As a first step, the aggregated 4 insoluble nanoparticles were placed into the empty 

unit cell. Then, cell with aggregated 4 nanoparticles packed with base oil were 

subjected to molecular dynamics simulations. They both preserve their aggregated 

structure. Mean square displacement was calculated for both cases. 

 

Figure 5.25. MSD calculations of four nanoparticles in a) empty unit cell and b) unit 
cell with base oil. 

The displacement of the nanoparticles in an empty cell is greater than as in base oil 

as seen in the Figure 5.25. Surfaces of the nanoparticles were polar and hydrophilic 

and have strong tendency to aggregate both in oil and in vacuum. We concluded that 

these particles were highly insoluble in oil. 

As a second step, four nanoparticles were positioned in an empty cell center with 

approximately 4 Å distance. After 5000 times geometry optimization, molecular 

dynamics simulation was performed. Similarly, aggregation behavior was observed. 

The first, middle, and the last frames of simulation was given in Figure 5.26 for total 

2 ns simulation.  
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Figure 5.26. a) The first, b) middle and c) final frames of MD simulations of 
separately placed four nanoparticles in empty unit cell for 2 ns simulation time. 

 

 

Figure 5.27. a) The first, b) middle and c) final frames of MD simulations of 
separately placed four nanoparticles in unit cell packed with 581 base oil molecules 
for 2 ns simulation time. 

In the first case without any base oil, aggregation was observed quickly in less than 

1 ns simulation time. In addition, it was calculated that the nanoparticles placed at 4 

Å distance, approached each other over time and reached 1 to 2 Å as depicted in 

radial distribution function (RDF). The peak at around 2 Å indicates the hydrogen 

bond formation which is exactly 2.11 Å in theoretical calculations (Figure 5.28). In 

Figure 5.29, the last frame of the simulation was shown and the hydrogen bonds 

between nanoparticles were presented. We concluded that hydrogen bonding 

between nanoparticles is the second reason for the aggregation mechanism in 

addition to the positive free energy of solvation. 

a) 

a) b) c) 

b) c) 
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Figure 5.28. Radial distribution function between hydrogen and oxygen atoms of 
nanoparticles. 

 

Figure 5.29. Hydrogen bonding between nanoparticles shown as black dashed lines. 

It was expected to observe the same aggregation behavior of nanoparticles in the 

base oil environment; however, they did not aggregate in the simulation time (Figure 

5.27). This MD simulation for four nanoparticle system was repeated many times. 

Each time, a different mechanism was observed such as coming closer distance but 

do not aggregate. This may cause from the non-homogeneous polar surface of the 

nanoparticle that contains many different functional groups; in real case this polarity 

may not be uniformly distributed. Since in this study nanoparticle has almost 

uniformly oxygen distributed, all the surfaces can interact with each other and base 
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oil and affect the attraction forces. This influences the aggregation mechanism. Until 

this point, it was shown that the nanoparticles, which had already been simulated in 

an aggregated state, continued to show aggregation behavior, not dispersed. 

Additionally, nanoparticles placed separately from each other also showed 

aggregation behavior in all cases in vacuum and in some of the cases in base oil. 

After determining hydrogen bonding between particles and positive solvation free 

energy as the main reasons behind aggregation mechanism between nanoparticles in 

base oil, the lowest energy structures were selected from the Monte Carlo based 

packing simulations that were used as initial structures in MD simulations. The cell 

with two nanoparticle structures was first simulated only in the base oil (Figure 5.30), 

followed by further simulations in which two dispersant (Figure 5.32) and six 

detergent molecules (Figure 5.35) were placed between nanoparticles in different 

simulations adopted from the lowest energy structures. 

 

 

Figure 5.30.  The first frame of MD simulations of two nanoparticles with 7 Å 
distance, b) the last frame of MD simulations of two nanoparticles with 2 Å distance. 

Distance evolution analysis were carried out with random distance measurements 

between the surface atoms of nanoparticles. This analysis was made for 900 ps time 

of the simulation. It was observed that all the distances decreased with time. Some 

of these distances reached close to the 2 Å indicate the presence of hydrogen bonding 

as indicated in Figure 5.31. 

a) b) 
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Figure 5.31. Distance evolution graph of two nanoparticles in the unit cell with base 
oil.

Figure 5.32. a) The first frame of MD simulations of two nanoparticles with 7 Å 
distance and two dispersant molecules, b) the last frame of MD simulations of two 
nanoparticles with 9 Å distance with two dispersant molecules. Inset figures show 
detailed captures.

In the simulations where the dispersant molecules were added, we observed not only 

the prevention of the nanoparticles from reaching each other, but also increased 

a) b)
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distance between them. We determined that non-polar isobutylene tails were 

extending into the base oil. We found that the observed distance increase between 

nanoparticles was due to the two reasons. First one was the intercalation of the polar 

amine succinimide group between the nanoparticles and secondly the movement of 

this longer poly-isobutylene tails of the dispersant molecule in base oil that created 

shear.  

 

Figure 5.33. Radial distribution function between amine of dispersant molecules and 
hydrogen of nanoparticles. 

From the RDF analysis given in Figure 5.33, it was clearly shown that hydrogen and 

oxygen atoms of the nanoparticles have 2 Å distances with the nitrogen and hydrogen 

atoms of dispersant in Figure 5.34. 

 

Figure 5.34. Hydrogen bonding between nitrogen of dispersant amine group and 
hydrogen of nanoparticle hydroxyl group shown as black dashed lines. 
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Next, two nanoparticle structures with six sulfonate and three calcium cations were 

studied. In all molecular dynamics simulations which has included sulfonate 

detergent, head group that is the polar anionic sulfonate group, was positioned on the 

nanoparticle surface ready to interact with the nanoparticle where they preferred to 

position between the two-nanoparticle interface in majority supporting the structures 

generated by Monte Carlo type random packing results. 

 

Figure 5.35. a) The first frame of MD simulations of two nanoparticles with 8 Å 
distance, and b) last frame of MD simulations of two nanoparticles with 7 Å distance 
with six detergent molecules. Inset figures show detailed captures. 

Due to the presence of sulfonate detergent between the nanoparticles, the 

nanoparticles did not show any aggregation behavior even though they get slightly 

closer. Additionally, since sulfonate head groups of the detergents were highly polar, 

they interacted with the polar surfaces of nanoparticles via hydrogen bonding. The 

head group of detergents were thus positioned toward the surface of the nanoparticle 

while their tails were extending into the oil. The tails of sulfonate detergent in the 

base oil kept the other nanoparticle away from one another by covering the surface 

which was the main working mechanism of the dispersant. 

a) b) 
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Figure 5.36. a) Distance distribution and b) RDF for the sulfonate head group and 
nanoparticle surface. 

The distance distribution and RDF analysis for the intermolecular distance between 

the oxygen atoms of the sulfonate head group and any atoms on the nanoparticle 

surface was given in Figure 5.36. At the end of the 2 ns simulation, this distance was 

calculated to be 2.34 Å at highest probability. This information supports the 

hydrogen bond formation between sulfonate head and nanoparticle surface similar 

with the polar group of the dispersants. Then hydrogen bonds were visualized as 

given in Figure 5.37 below. 
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Figure 5.37. Hydrogen bonding between oxygen atoms in sulfonate head group and 
hydrogen atoms in nanoparticles surface for two nanoparticle system shown as black 
dashed lines. 

The new structures were constructed where the number of nanoparticles increased to 

three. Similar with previous simulations, unit cell with only base oil and 

nanoparticles was performed first in MD simulations (Figure 5.38). 

 

Figure 5.38. a) The first frame of MD simulations of three nanoparticles with 5 Å 
distance, b) the last frame of MD simulations of aggregated three nanoparticles. Inset 
figures show detailed captures. 

b) a) 
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Figure 5.39. Distance evolution of the intermolecular distance between 
nanoparticles in three nanoparticle system. 

Randomly selected distances between surface atoms of the nanoparticles were 

evaluated for 2 ns simulation time. All the distances showed decreasing trend. Some 

of these distances reached as low as 1.7 Å distance as depicted in Figure 5.39. In 

closer image given in Figure 5.40, it was shown that hydrogen bonds were formed 

between aggregated nanoparticles. 

 

Figure 5.40. Hydrogen bonding between nanoparticles shown as black dashed lines. 
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Figure 5.41. Distance distribution of randomly chosen distances between aggregated 
nanoparticles. 

It was presented in Figure 5.41 that the distances between aggregated nanoparticles 

have the highest probability at 1.68 Å distance which pointed out strong aggregation 

behavior.  

 

Figure 5.42. a) The first frame and b) the last frame of MD simulations of three 
nanoparticles with three dispersant molecules. Inset figures show detailed captures. 
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In order to observe the effect of dispersant addition in the three-nanoparticle system, 

three, six and nine dispersant molecules were packed separately into the same cell 

(Figure 5.42-5.44). For the generated unit cells in all cases with different number of 

dispersants, the additives were always positioned in such a way that their middle 

polar part, namely the polar amine bis-succinimide structures were in interaction 

with the nanoparticle surfaces. In the MD simulations, this structure was preferred 

due to the packing calculations that show cell with the lowest energy have the 

dispersant structures were placed in this way. 

Dispersant molecules were then simulated with the same parameters between the 

Figure 

5.42). Since the distance between the nanoparticles were relatively small, dispersant 

molecules were intercalated and interacted with both nanoparticles at the same time. 

 

Figure 5.43. a) The first frame and b) the last frame of MD simulations of three 
nanoparticles with six dispersant molecules. 

a) b) 



 
 

75 

Figure 5.44. a) The first frame and b) the last frame of MD simulations of three 
nanoparticles with nine dispersant molecules. 

 

 

 

 

 

 

Figure 5.45. MSD graphs of three nanoparticles for a) three, b) six, and c) nine 
dispersant molecule structures. 
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Mean square displacement analysis for the mobility of the nanoparticles show that, 

the first system with three dispersant molecules has the highest value (Figure 5.45). 

This means that when the number of the dispersant molecules increases, mobility of 

the nanoparticles decreases as expected. It was believed that covered nanoparticles 

form a colloid like structures which do not prefer to aggregate and stay stable in base 

oil solution. 

In the three-nanoparticle cell structure, different numbers of detergent molecules 

were added to determine the effect of sulfonate density on the aggregation 

mechanism. Packing of the cell with six, twelve, eighteen detergents were prepared 

(Figure 5.46-5.48). 

 

 

Figure 5.46. a) The first frame and b) the last frame of MD simulations of three 
nanoparticles with six sulfonate detergent molecules. Inset figures show detailed 
captures. 

Similar with the previous simulations with two nanoparticles, hydrogen bond 

formation between oxygen atoms in sulfonate head group and hydrogen atoms in 

nanoparticles surface were determined. Complete aggregation was not observed with 

a) b) 
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the high number of sulfonates covering the nanoparticle surface given for addition 

of twelve and eighteen sulfonate detergents. RDF results supported the formation of 

strong hydrogen bonds at the surface with the sulfonate head groups with the 

extended tail into the base oil phase (Figure 5.49). 

 

 

Figure 5.47. a) The first frame and b) the last frame of MD simulations of three 
nanoparticles with twelve sulfonate detergent molecules. Inset figures show detailed 
captures. 

 

a) b) 
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Figure 5.48. a) The first frame and b) the last frame of MD simulations of three 
nanoparticles with eighteen sulfonate detergent molecules. Inset figures show 
detailed captures. 

 

Figure 5.49. RDF of oxygen atoms of detergent head group and hydrogen atoms at 
the nanoparticle surface. 
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Figure 5.50. Hydrogen bonding between oxygen atoms in sulfonate head group and 
hydrogen atoms at nanoparticle surface for two nanoparticle system, shown as black 
dashed lines. 

The cell structure with the addition of eighteen detergent molecules has the smallest 

MSD value (Figure 5.51). Since displacement data indicated the mobility of the 

selected nanoparticles over the time, it can be concluded that eighteen detergent 

molecules can mitigate the mobility of the nanoparticles to prevent the aggregation. 

Figure 5.51. MSD graphs of three nanoparticles for a) six, b) twelve, and c) 
eighteen detergent molecule structures. 
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Figure 5.52. a) The first frame of MD simulations of four nanoparticles with 8 Å 
distance, b) the last frame of MD simulations of four nanoparticles after 2 ns, c) last 
frame of MD simulations of four nanoparticles in base oil after 4 ns. 

After the cell with four nanoparticle structure was constructed, base oil added to the 

cell with the experimental density followed by 5000 steps of geometry optimization. 

Next, MD simulation with a total simulation time of 2 nanoseconds was performed. 

However, aggregation behavior was not observed for nanoparticles contrary to our 

expectations. Considering that 2 nanoseconds might be insufficient, the total 

duration of the simulation was increased to 4 nanoseconds. However, it was still not 

sufficient to observe aggregation behavior (Figure 5.52). It should be noted that when 

simulations started from the cell with aggregated nanoparticles, the aggregate was 

stable for the simulation time and did not dissolve in base oil.  

As a result of this, it can be said that for this prepared structure, the nanoparticles 

must be positioned closely for a total of 2 nanoseconds simulation, or the simulation 

time should last longer than 4 nanoseconds. This time, the structure with 

nanoparticles at a distance of 5 Å was prepared and MD simulation was performed, 

given in Figure 5.53. However, this structure did not show aggregation behavior 

unless the temperature was increased. They aggregated when the temperature was 

increased to 823 K. This leads to the conclusion that physical factors in engine can 

affect the aggregation mechanism. It should be noted that average base oil 

temperature at 423 K were used in simulations and the temperature in the engine can 

reach much higher temperatures. This could be one of the reasons we did not observe 

self-aggregation process in simulations. 

a) b) c) 
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Figure 5.53. a) The first frame of MD simulations of four nanoparticles with 5 Å 
distance in 423 K, b) the last frame of MD simulations of four nanoparticles after 2 
ns in 423 K, c) last frame of MD simulations of four nanoparticles in base oil after 2 
ns in 823 K. 

There was about 4 Å distance between nanoparticles in Figure 5.53.b. In the last 

frame, where temperature was significantly higher, aggregate formation were 

observed. Increasing temperature in this system has led increasing molecular kinetic 

energy of the molecules and their mobility which decreases the simulation time 

required for the aggregation. 

In order to study the motion of nanoparticles when dispersant was added, four PIBSI 

was added to the 4-nanoparticle cubic unit cell (Figure 5.54) and MD simulation was 

average temperature. 

 

Figure 5.54. The first and b) the last frame of MD simulations of four nanoparticles 
with four dispersant molecules in 423 K. 

a) b) c) 

a) b) 
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The dispersants placed between the nanoparticles prevented them from aggregation 

even though the distance between them was lowered. This indicates that the 

mechanism of dispersant was not complete separation of the aggregates, rather than 

preventing the formation of larger aggregates. Radial Distribution Function analysis 

was performed on the assumption that the amine and succinimide atoms of the 

dispersant are the ones formed hydrogen bonds with the nanoparticles (Figure 5.55). 

Peaks around 2 Å indicated that this estimate was accurate. RDF show that amine 

part is mainly responsible with the interaction of dispersant with nanoparticle. Then 

hydrogen bonds were calculated and visualized given in Figure 5.56.  

 

Figure 5.55. RDF between hydrogen atoms in nanoparticle surface and a) nitrogen 
atoms amine portion b) oxygen atoms in succinimide portion. 

 

 

 

 

  

  

Figure 5.56. Hydrogen bonding between a) the nitrogen atoms in dispersant amine 
group and hydrogen atoms in nanoparticles surface b) the oxygen atoms in dispersant 
succinimide group and hydrogen atoms in nanoparticles surface, shown as black 
dashed lines. 
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Simulations with eight sulfonate addition to the cell with four nanoparticle showed 

that there was not any complete aggregation for the nanoparticles (Figure 5.57). 

Similar with the two and three nanoparticle systems, it has been demonstrated that 

hydrogen bonding formed in cells with dispersant, were also observed with sulfonate 

detergents, however with different strength and atom types. A large peak around 2 

Å was also observed in the radial distribution function analysis for the four 

nanoparticle system with sulfonate addition (Figure 5.58). Hydrogen bonds were 

also visualized between nanoparticle surface hydroxyl and carboxylic acid groups 

with sulfonate head group in Figure 5.59. 

 

Figure 5.57. a) The first and b) the last frame of the MD simulation of four 
nanoparticles with eight sulfonate detergent molecules in cubic unit cell. 

 

Figure 5.58. RDF between oxygen atoms in the head group of the sulfonate 
detergent and hydrogen atoms on nanoparticle surface. 
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Figure 5.59. Hydrogen bonding between oxygen atoms in the head group of 
sulfonate detergent and hydrogen atoms at the nanoparticle surface, depicted as black 
dashed lines. 

5.8 Coarse-Grained Simulations 

The pairwise coarse-grained interactions between the 4-6 heavy atom units mapped 

from solubility parameters determined by molecular mechanics were given in Table 

5.4. As calculated by both DFT and molecular mechanics methods, strongest 

attractive interactions are between sulfonate head group (S) and the polar groups of 

nanoparticles (P and R) as well as succinimide amine groups (N) and the polar groups 

of nanoparticles (P and R). The most repulsive interactions were between alkyl tails 

and polar groups of nanoparticle, detergent, and dispersant. 
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Table 5.4. Coarse-grained interaction parameters mapped into the coarse-grained 
units.  

 

Spherical nanoparticles were only visualized and none of the additives and base oils 

were shown in the results of coarse-grained simulations. Morphologies of 

nanoparticles for increasing nanoparticle fraction in the cell were given in Figure 

5.60. It was demonstrated that spherical nanoparticles can aggregate at every fraction 

with different extent. Aggregates showed increasing size of spherical morphologies 

for the fraction less than 20%. For higher nanoparticle ratio, we observed the 

formation of continuous labyrinth and gyroid like porous morphology due to the 

association of these spherical aggregates. 

pair interaction pair interaction pair interaction pair interaction 

AA -3.0 AP 2.0 AO 2.5 AB 1.0 

PA 2.0 PP -6.5 PO 2.5 PB 6.0 

CA 2.5 OP 2.5 OO 0 OB 4.0 

BA 1.0 BP 0.6 BO 4.0 BB 0 

RA 2.5 RP -7.0 RO 3.0 TA 0.5 

TP 7.0 TO 2.0 NA 1.0 NP -8.0 

NO 3.0 RB 6.5 TB -5.0 NB 1.0 

AR 2.5 PR -8.0 OR 3.0 BR 6.5 

RR -7.5 TR 9.0 NR -8.0 AT 0.5 

PT 7.0 OT 2.0 BT -0.5 RT 9.0 

TT 0 NT 7.0 AN 1.0 PN -8.0 

TN 7.0 NN -2.0 SA 1.0 SP -11 

SO 3.0 SB 1.0 SR -12 ST 7.0 
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Figure 5.60. Insoluble nanoparticle isosurface structures with a) 95% oil and 5% np, 
b) 90% oil and 10% np, c) 85% oil and 15% np, d) 80% oil and 20% np, e) 70% oil 
and 30% np, f) 60% oil and 40% np, g) 50% oil and 50% np ratios. 

For the fixed fraction of nanoparticles with increasing dispersant ratio, we observed 

decreasing aggregation by dispersant addition which indicate the mitigation of 

deposit formation by the addition of dispersants (Figure 5.61). However, by the 

extreme addition of dispersant such as 25%, we observed increase of aggregate size 

again. It was believed that highly hydrophobic surface of nanoparticle due to the PIB 

tails of dispersant can also cause aggregation.  

oil 95%- np 5% oil 90%- np 10% oil 85%- np 15% 

oil 80%- np 20% oil 70%- np 30% oil 60%- np 40% 

oil 50%- np 50% 

a) b) c) 

d) e) f) 

g) 
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Figure 5.61. Insoluble nanoparticle isosurface structures with a) 85% oil and 15% 
np, b) 2% disp- 83% oil - 15% np, c) 5% disp- 80% oil - 15% np, d) 10% disp- 75% 
oil - 15% np, e) 15% disp- 70% oil - 15% np, and f) 25% disp- 60% oil - 15% np 
ratios.

Similar mitigation of aggregation was also observed by the addition of sulfonate 

detergents (Figure 5.62). It should be noted that complete dissolution of 

nanoparticles had never been observed. What we determined was mostly decrease in 

the size of the aggregates by the addition of detergent and dispersant. 

oil 85%- np 15% disp 2% oil 83%- np 15% disp 5% oil 80%- np 15%a) b) c)

disp 10% oil 75%- np 15%d) disp 15% oil 70%- np 15%e) disp 25% oil 60%- np 15%f)
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Figure 5.62. Insoluble nanoparticle isosurface structures with a) 85% oil and 15% 
np, b) 2% det- 83% oil - 15% np, c) 5% det- 80% oil - 15% np, d) 10% det- 75% oil 
- 10% np, e) 15% det- 70% oil - 15% np ratios.

For the fixed ratio of detergents and dispersants at 10%, the additives were 

successfully mitigating the effect of aggregation to some point by the increase of 

nanoparticle ratio (Figure 5.63 and 5.64.). Formation of large aggregates before more 

than 20% of the nanoparticles was not observed. This result showed that for the 

deposit formation at very large extent and size, dispersants and detergents in the 

formula may not be enough to control them completely.

oil 85%- np 15%a) det 2% oil 83%- np 15%b) det 5% oil 80%- np 15%c)

det 10% oil 75%- np 15%d) det 15% oil 70%- np 15%e)
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Figure 5.63. Insoluble nanoparticle isosurface structures with a) 10% disp - 85% oil 
- 5% np, b) 10% disp- 80% oil - 10% np, c) 10% disp- 75% oil - 15% np, d) 10% 
disp- 60% oil - 30% np ratios.

disp 10% - oil 85% - np 5%a) disp 10% - oil 80% - np 10%b)

disp 10% - oil 75% - np 15%c) disp 10% - oil 60% - np 30%d)
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Figure 5.64. Insoluble nanoparticle isosurface structures with a) 10% sulf - 85% oil 
- 5% np, b) 10% sulf- 80% oil - 10% np, c) 10% sulf- 75% oil - 15% np, d) 10% sulf- 
60% oil - 30% np ratios. 

As given for the extreme size of continuous aggregates similar with the ones formed 

on the piston grooves, dispersants and detergents were not clean and control the 

deposit at their low ratios (Figure 5.65). It can be concluded that different 

formulations may be required for the different sizes of deposits.  

 

 

 

 

 

sulf 10% - oil 85% - nano 5% sulf 10% - oil 80% - nano 10% 

sulf 10% - oil 75% - nano 15% sulf 10% - oil 60% - nano 30% 

a) b) 

c) d) 
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Figure 5.65. a) 2% detergent could not dissolve the 30% nanoparticles, b) 5% 
dispersant could not dissolve the 50% of nanoparticles.

The effect of increasing temperature has not been observed (Figure 5.66). There are 

two reasons for this phenomenon. First, our method cannot cover formation of new 

nanoparticles at high temperatures. Secondly, our method was very coarse that 

depends on the repulsions and attractions between structures basically. We 

concluded that this method is too coarse to monitor effect of kinetic factors at great 

detail.

Figure 5.66. Insoluble nanoparticle isosurface structures at a) 300 K, b) 450 K, c) 
600 K temperatures.

sulf 2% - oil 68% - np 30%a) disp 5% - oil 45% - np 50%b)

300 Ka) 450 Kb) 600 Kc)
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Field density representation by increasing color tones with and without depiction of 

dispersant head group is given in Figure 5.67.a and 5.67.c, respectively. Although 

dispersant polar group shown by green in color is present everywhere in the cell, 

their concentration was much higher as shown by bright green around the 

nanoparticle. This result was also valid for the sulfonate head groups of the 

detergents. The field densities of sulfonate head group show that most of the 

sulfonate groups are coordinated on the nanoparticle surface demonstrated by 

brighter green colors in Figure 5.67.d. 

   

 

 

 

 

 

 

 

 

Figure 5.67. The field density distribution of nanoparticles in oil without (a, b) and 
with (c, d) the depiction of polar amine center in dispersant and sulfonate head group. 

 

 

 

  

 

b) d) 

a) c) 
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CHAPTER 6   

6 CONCLUSION 

Multiscale modeling methods was used to explain the working mechanisms of the 

detergents and dispersants, which are the main additives in engine oils to prevent 

deposit formation. The effect of different groups in detergents and dispersants on the 

deposit formation mechanism in multiscale models which include first principle DFT 

calculations, Monte Carlo methods, all-atom molecular dynamics simulations and 

coarse-grained simulations that were examined successfully first time for this kind 

of system in the literature. 

All experimental results on lubricant oil recipe and insoluble nanoparticles were 

provided by Lubrizol Corporation. The main experimental results were pointed out 

the presence of nanoparticle agglomeration in both drain oil and on piston grooves 

with the similar morphology which form larger size deposits in the first one. It was 

observed that these deposits accumulate in the piston grooves and clog them over 

time and prevent engine running. By the elemental analysis methods such as XPS 

analysis, it was observed that the insoluble nanoparticle surface was mostly 

composed of carbon and oxygen in amorphous structure. Experimental results 

showed that detergents and dispersants can mitigate this problem. Experimental 

results were used as the roadmap for the design of computational experiments in this 

thesis.  

In the engine oil structure, the base oil has the highest volume ratio. In the structure 

of the Group II base oil which was used in our model, both small percentage of alkene 

and branching factors were considered. Besides, molecular and electronic structure 

of polyisobutylene-bis-succinimide dispersant and sulfonate detergent were studied 

that explains their role even at molecular level. In the PIBSI dispersant structure, 

electron rich and deficient parts were concentrated in amine and bis-succinimide 
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groups, which showed that these groups had high polarity. In the sulfonate detergent 

structure, the electrostatic potential surface showed high electron density on 

sulfonate head group. High electron density was on the polar sulfonate head group 

while low electron density was on the alkyl tail. Molecular model for insoluble 

nanoparticle, which is one of the most challenging parts of this thesis study, has been 

performed for the first time in the literature. A model that can aggregate in oil with 

a relatively polar surface made of carbon and different functional groups at 

experimental ratio were created after many trials. The electronic structures of the 

chemicals in the engine oil which are base oil, dispersant and detergent, determined 

by first principle calculations that show hydrophilic and hydrophobic parts as well 

as atomic charges to validate force field based molecular mechanics calculations in 

the first step. 

Most probable interactions and configurations of molecules were determined in the 

interaction energy calculations by both DFT and mixing energies based on molecular 

mechanic methods. Interaction energies and mixing between components gave the 

idea on the experimental observations before any simulations. Solubility parameters 

of the different groups on the dispersant and detergent molecules were calculated 

after modeling the structures of the chemicals. It was found that the solubility 

parameters of the non-polar dispersant and oil groups and the polar dispersant and 

sulfonate head groups had values that are relatively close to each other. These 

findings supported the notion that whereas amine and succinimide prefer to interact 

with the polar surface of the nanoparticle, the non-polar tail of the dispersion and 

detergents may extend into the base oil. The mixing energies and solubility 

parameters were then used as inputs for coarse grained simulations. AlogP 

calculations were performed to determine hydrophilicity or hydrophobicity of 

different molecular groups of dispersant and detergents. It was found that 

succinimide amine, sulfonate head groups and surface components of insoluble 

particles are relatively hydrophilic; PIB and base oils were hydrophobic structures. 

Another guide for understanding of the deposit formation mechanism was solvation 

free energy calculation of nanoparticle. Solvation free energy of nanoparticle in base 
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oil was calculated positive which points out the molecular origin of the self-

aggregation mechanism of deposit formation. 

After modeling molecular structures and solubility parameter, hydrophobicity, 

interaction energy and solvation free energy calculations, construction of amorphous 

cells were done using Monte Carlo algorithm to prepare initial structures for 

Molecular Dynamics Simulations. Oil density at experimental value was reached at 

constant pressure that validate the force field parameters. Two different methods 

were used in construction of initial cell structures for MD simulations. In the first 

method, dispersants and detergents were packed into the cell where only 

nanoparticles were present. In the second method, first oil was added into the cell 

where only nanoparticles were present followed by detergent and dispersant 

addition. In both methods, it was observed that polar group of the dispersant and 

detergent were coordinated onto the nanoparticle surface at the lowest energy cell 

geometry which agrees with first principle calculations. Although both methods have 

similar structures, first method was selected since free volume on the polar surface 

of the nanoparticle was not prevented by oil molecules as in second method that polar 

groups of dispersant and detergents cannot position perfectly on the surface. The 

lowest energy structures of the two, three, and four nanoparticle structures which 

contains dispersant and detergent molecules were prepared for molecular dynamics 

simulations after geometry optimizations.  

Calculations such as radial distribution functions, mean square displacement of 

nanoparticles, length evolution between nanoparticles were made for each of the two, 

three, and four nanoparticle structures for the equilibrium structure of MD 

simulations. It was observed that hydrogen bonds formed between nanoparticles 

were the second reason for nanoparticle aggregation and deposit formation when the 

first reason was positive solvation free energy. In addition, it was presented that in 

structures with dispersant molecules, they prevented aggregation formation by 

entering between nanoparticles. The central amine and succinimide groups of the 

dispersant and the sulfonate head group of the detergent intercalate between the 

nanoparticles and hydrogen bonds were formed with oxygen which were on the 
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nanoparticle surface. Hydrogen bond formations were determined in the system by 

radial distribution function analysis quantitatively. Moreover, the long alkyl tails of 

the dispersant and detergent were extending in the base oil, preventing aggregation 

of other nanoparticles. Tail groups extended into the base oil contributes to the 

dispersion and detergency by forming a repulsive layer as well as creating shear by 

the flow of base oil. It was concluded that the main purpose of the dispersant and 

detergent was not to completely disperse the nanoparticle clusters, but to prevent the 

formation of larger aggregates.  

Coarse-grained simulations based on the mean field density functional theory 

showed three results: Aggregation of nanoparticles was inevitable without any 

detergents and dispersants. Aggregation of nanoparticles can be mitigated by the 

addition of dispersants and detergents. For the increasing nanoparticles and fixed 

amount of detergents and dispersants, such as 10% molecular ratio, we observed 

presence of critical ratio such that detergents and dispersants were not enough to 

disperse nanoparticles at high nanoparticle concentration. This implied that there was 

critical molecular ratio for the detergents and dispersants in the mixture. For the low 

ratio of nanoparticles, increasing dispersants and detergents mitigates aggregation, 

however we observed aggregations formed again at very high ratio of dispersants 

which was predicted to sourced from aggregation of PIB tails. 
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